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Introduction

Statistical mechanics is the science of predicting the observable properties of a
many body system by studying the statistics of the behaviour of its individual con-
stituents like atoms, molecules, photons, electrons, phonons, quarks etc. Thus with
the help of statistical mechanics we are able to explain the following:

Thermionic emission

Photoelectric effect

Black body radiation

Stellar properties

All stars, neutron stars, white dwarfs etc.

Thermal and electric properties of solids. (Thermal conductivity, specific heat
of solids, electrical conductivity etc.)

7. Magnetic properties of materials. (Dia, Para, ferro, susceptibility etc.)
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The very name statistical mechanics implies that it is not concerned with the
actual motions or interactions of individual particle but instead with what is most
likely to happen. It never tells us the history of one of the particles of the system but
it tells us the probability that the particle has a certain amount of energy at a certain
moment. Statistical mechanics can be applied to classical systems (molecules in a
gas) as well as to quantum mechanical systems (electrons, photons etc.)

Statistical analysis

In physics many of the experiments are analysed as if the interactions takes place
in single, isolated events. For example in Rutherford scattering and Compton scat-
tering experiments treated the events as single and isolated. Suppose we consider
another simple experiment that we supply heat energy to a gas constituting large
number of particles (atoms). The energy that we supply will go to all the particles.
Here the system cannot be treated as a single entity (or event). At the same time we
cannot analyse the behaviour of individual atoms which are millions of millions in
number. Such systems could be analysed by the technique of statistical mechanics.
That is statistical mechanics deals with the collective behaviour of the system. In
this analysis we are not concerned with or not possible to have the exact outcome of
single particle. But statistical mechanics predicts the average outcome of the collec-
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tive behaviour of particles or events based on the statistical distribution of all the
possible outcomes. The above discussion shows that whenever a system containing
large number of particles the concept of statistical mechanics is necessary.

Apart from the simple experiment quoted above there are so many complex sys.
tems that contain large number of particles such as the spectrum given out by mer-
cury vapour while passing electric current through it and the thermionic emission of
tungsten filament of an ordinary incandescent light bulb etc. In the case of spectrum
millions of photons take part in the process and in the case of thermionic emission
millions of electrons take part. How do we analyse such complex systems which
contain infinitely large number of particles. Statistical analysis provides the exact
prediction of the output. Here we discuss how statistical analysis is done.

It may seem that there are two possible ways to approach the analysis of a com-
plex system. First is to specify a set of microscopic properties such as position and
velocity of each atom. Even for a pinch of matter contains very large number of
particles (Avogadro number 6.02 x 10* per mole). Assigning positions and veloci-
ties to 10* atoms and then to proceed is an impossible task. The second approach is
understanding and predicting the behaviour of systems containing many particles in
terms of a few macroscopic properties such as the pressure, temperature etc. The
development of relationship between microscopic and macroscopic properties was
one of greatest achievements, which plays a crucial role in the development of sta-

tistical mechanics.

Macroscopic property of a system

It is the behaviour exhibited by the system at macroscopic level. Pressure, tem-
perature, energy are some of the macroscopic properties of gas. These properties are
observable and can be measured.

Microscopic property of a system
It is the behaviour exhibited by individual constituents of the system or it is the
behaviour of the system at microscopic level.

Macrostate and microstate

Consider the macroscopic property energy (E) of the system. This energy is due
to the contributions coming from individual particles. Thus the energy (E) of the
system can be achieved in different possible ways of energy distributions of indi-
vidual particles. Each possible arrangement is called the macrostate of the system.
In each macrostate a number of different arrangements of particles is possible to get
the same energy E. Each different arrangement is known as the microstate of the
system. This can be clarified by taking examples.
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Consider the distribution of 2 units of ene

identical but distinguishable particles. A, B,
acquire energy only in integral units,

T2y to a system (gas) containing four
Cand D. Assume that each particle can

Energy of the particle ~ Total energy

Macrostate 1 A B & D
2 0 0 0 2
Macrostate I1 1 1 0 0 2

Thus our system has only two macrostates.
But in macrostate we can distribute energy among particles in differents ways.
Energy of the particle ~ Total energy

Macrostate [ A B C D
2 0 0 0 2
0 2 0 0 2
0 0 2 0 2
0 0 0 2 2

Thus we have 4 possible arrangements in macrostate I. That is Macrostate I has
four possible microstates.

Energy of the particle Total energy

Macrostate 11 A B C D
1 1 0 0 2
1 0 1 0 2
1 0 0 1 2
0 1 1 0 2
0 0 1 1 2
0 1 0 1 2

Here we have 6 possible arrangements in the macrostate II. That is macrostate II
has 6 microstates.

The number of microstates in a given macrostate is called multiplicity denoted by
W. In our system

W, =4and W, =6.
By counting the number of microstates we can make a statistical analysis.

One application of the counting of multiplicity is to determine the direction of the
natural evolution of the system. According to second law of thermodynamics an
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isolated systems evolve in a direction of increasing entropy, our system evolye,
along the direction of multiplicity. Thus we can say that when multiplicity increaseg
entropy of the system also increases. That is, if we started our system in the MiCrostate
I and allowed the particles to interact with one another, after sometime the syste,
would be in the macrostate IL If the system is in the macrostate I after sometime,
the system is less likely to find in macrostate 1. This is because multiplicity de-
creases in going from macrostate II to I as the natural system evolves along the
direction of multiplicity.

In the above statistical analysis there is an implicit postulate.

That is “all microstates are equally probable”.

In our system considered there are totally 10 (4 + 6) microstates. According to the
postulate our system can be found with equal probability in any of the 10 microstates.
Since there are 6 microstates in macrostate II and 4 microstates in macrostate I, the
system is more likely to be found in macrostate II. This probability is obviously

%=60%. Thus the probability of finding the system in the macrostate I is

2.1 40%. 1.e., The system is found in the macrostate I with 40% probability and in

10
macrostate 1I with 60% probability.

This shows that the above said postulate enables us to calculate the probability of
occurance of the system in different macrostates. (see examples 1 and 2).

We can conclude this section by saying that the statistical analysis of a complex
system gives us a way of describing the system, its average properties and its evolu-
tion in time.

Example 1

a) Considering the numbers of heads and tails, how many macrostates are there
when 4 coins are tossed.

b) What is the total number of possible microstates in tossing 4 coins.

¢} Find the total number of microstates for each microstate.

Solution

a) When 4 coins are tossed there are 5 different distributions. They are (0H, 4T),
(1H, 3T), (2H, 2T), (3H, 1T) and (4H, 0T) so we have five macrostates.

b) To find the total number microstates, we have to find out all possible distributions
in each macrostate. See the table below.

——J
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1)

2)

3)

4)

5)

Number of
Macrostate Microstate microstates
W
Head (1) Tail ({.)
0 4 il 1
1 3 Tl
T 4
T
RN
2 2 T
T
LT
T 6
LT
TIT
3 1 T
TiT
TN 4
N
4 0 T 1

or Each toss has 2 possible outcomes, so

the total number of possible outcomes =2* =16

Example 2

A collection of three non-interacting particles shares 3 units of energy. Each par-
ticle is restricted to having an integral number of units of energy.

" Total number of microstates =1+4+6+4+1=16
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(a) How many macrostates are there?
(b) How many microstates are there in each of the macrostates
(c) What is the probability of finding one of the particles with 2 units of energy9

With O units of energy?

Solution
A B C Total energy
a) Macrostates 1 3 0 0 3
Macrostate 2 2 1 0 3
Macrostate 3 1 1 1 3

Thus there are 3 macrostates.
b) In macrostate 1, there are 3 different ways of arrangements

AT B
3 0 0
0 3 0
0 0 3
In macrostate 2
A” =B O
2 1 0
2 0 1
| 2 0
1 0 2
0 1 2
0 2 1
So there are 6 microstates.
In macrostate 3 AL B - C
1 1 1

There is only one possible arrangement, so there is only one microstate.
¢) There are totally 3 + 6 + 1 = 10 microstates.

The probability of occurance of 2 units of energy in macrostate 1 is zero, because
none of the particles in microstate 1 has 2 units of energy.

In macrostate 2, there are 6 microstates.
Probability of the macrostate 2
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=5 _60u
T

Only one of the particles in macrostate 2 has 2 units of energy.
Probability of finding one of the particles with energy 2 units
1 6
= =X=—=(.2 =20%.
3710 .

None of the particles has 2 unit of energy in the macrostate 3.

Overall probability = 9><i+l><£+9><L =20%.
3 10 3 10 3 10
0 units of energy probability

The probability of finding one of the particles in the macrostate 1

x30% =20%.

w | N

1
In macrostate 2 = 3 x60%=20%

In macrostate 3 none of the particles has 0 unit of energy, so probability = ()
Overall probability = 40%.

Generalisation of probability
We have from (c) of the example 2

P(8:2)=9X—i+lx_6_+9x._.!_

3 H10553010 3 10
Generalising this result, we get

N, W, N, W, N, W
-+ + + =
N-Welr - N W= MW
Where N, is the number of particles with energy ¢, in the first macrostate 1 with
multiplicity W and W__ is the overall total multiplicity.

P(e) =

N, is the number of particles with energy &, in the macrostate 2 with multiply
W,. Similarly W, is the number of particles with energy ¢ in the macrostate 3 with
multiplicity W,. In general we can write.
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> NW,

where i runs over all the macrostates.

12

Classical and quantum statistics
In classical statistics particles are identical but distinguishable where as in quan-

turn statistics particles are treated as identical but indisting_uishablc. It is due to this
difference the multiplicity and the probability will be different in the two regimes.
By taking a simple example we can illustrate this.

Classical
Consider the distribution of 6 units of energy to a system containing only 5 iden-

tical but distinguishable particles. Assume that this particles can acquire energy only

in integral units and also acquire O unit of energy.
Here there are 10 macrostates (see tabular column below)

Energy of the particles (Table I)

Macrostates 0 1 2 3 4 5 6 Total energy
1 4051 0 [0 | 010 1 6
2 3 1 0 {0 (0 1 0 6
3 S e LR ) 0 1 0 |0 6
4 2o =110 1 0 (0 6
) 2 1 1 1 0 ]1]0 |0 6
6 2 500 505 2 51000 -0 0 6
7 ae R (R 6 S G e ) 6
8 1 310 1 0= a0.-1:0 6
9 1 22010 L 0 0 6

10 0 | 4 1 0O |0 (0 (O 6

We obtained 10 macrostates. The multiplicity of each microstate in the macrostate
can be calculated as before. That method of finding the number of microstates by
d.rawmg 'tabulator column is laborious and time consuming. So to evaluate the num-
ber of microstate (multiplicity W) we introduce a formula

N!

e
N03N13N23N3!N4!N5gN6! ..... (2)

—
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Where N is the total number of particles and NN, N,, N,, N,,N., N, are the
number of particles with energies 0, 1, 2, 3, 4, 5, and 6 respectively. In general
1
W
‘I_IDNi ..... (3)
Remember that
N, +N +N+N. +N +N. +N =N
and 0 XN, +1xN, +2xN, +3N,_+4N, + 5N_+ 6N, = Total energy
For example, in the macrostate 1
Ny=4,N,=0,N,=0,N,=0,N,=0,N,=0and N, =1
Ni=5

_ St 1.2.345 _ 5
L4l 1.23.4
Similarly we can calculate all multiplicities
W, =20
W, =20
W, =30
W. =60
W, =10
W.=10
W, =20
W, =30
W, =5
. The overall total number of microstates
W =5+20+20+30+60+10+10+20+30+5

total

W =210.

total
When there are N particles share Q integral units of energy.

_(N+Q-I)! _
total Q' (N—l)‘ ..... (4)
In our problem N=5,Q =6
D H6 =1 et

W, 210.

oal TTETAL 61 41
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We already calculated the general expression for the probability of finding one (¢

particles with energy &.

L NW,
ien Plg)= =+ o G Gt SRR I L ST S S ey (5)
)= 15w,
i runs over all macrostates. (=110 10)
5><5+4><.20+4x20+4x30+3x60+5x10+5.-><10 +4x%x20+4%x30+5x5
P(0) =
10x210
_ 25+80+80+120+180+50+50+80+ 120+25
P(0) = _
2100
P(0) =0.4 similarly, we get
P(1)=0.267 P(5)=0.019
P(2) =0.167 P(6) =0.005
P(3) =0.095
| P(4) =0.048
1 Summing all the probabilities over all energy states we get unity.
6
1€, ZP(55)=1
1=0

When we draw a graph between energy along the x-axis and probability P(g)
along the y-axis, we get a graph as shown in figure below.

0.5
0.4 \
0.3

0.2

P(e)

0.1

0 —

Figure 1.1: Probabilit
: 1L y graph
(The curve is an exponential function that closely fits the points)
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The smooth curve obtained is an exponentially decreasing curve.
ie., P(g) ae™
Where [ is a constant to be chosen to fit the curve.

The whole discussion shows that for classical particle the probability distribution
is an exponential function. '

Note: P(g)=A""e™
Summing over all energy states, we get
IP(e)=A" Ze“’“
i=1
But 2 P(e)=1
1=A" ZC'B"
i=1

or Al =

1
S
i=1

e"ﬁ":i

_iﬁf ..... (6)

i=1

P(e.) =

Quantum statistics

In quantum mechanics particles are treated as identical and indistinguishable, So
while enumerating the multiplicity in quantum statistics it will be different from that
of classical statistics. For example consider a macrostate in classical statistics. The
classical system containing three distinguishable particles A, B and C with energies
2, 1 and 3 units respectively with total energy 6 units. Here we consider only one
macrostate.

i.e., Macrostate is A B C

2 1 3

These energies 2, 1 and 3 can be distributed to the particles A, B and C in differ-
ent ways. The number of different arrangements gives the number of microstates

(multiplicity)
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18 A B C
2 1 3 ]
1 2 3
2 : i 6 numbers
1 3 2
P il T
3 2 1

Thus the number of microstates (multiplicity) in the particular macrostate is 6,

In quantum statistics particles are indistinguishable. So A=B=C=A
". The corresponding macrostate in quantum statistics for the above example is
L Y
Do 3
Here no more different arrangements of distributing energies to particles is pos-
sible. Hence the number of microstate (multiplicity) is one. S5 _
If you take any other macrostate, the corresponding number of state is always
one. Thus, we can say that for identical indistinguishable (quantum) particles the..
multiplicity of each macrostate is always one.

Another important restriction imposed by quantum particles is the accommoda-
tion of number particles in each state. For example suppose we deal with electrons

.1 : : . —_
(spm 5) According to Pauli’s exclusion principle a state can accomate a maxi-

W : 1
mum of two electrons with different quantum numbers, say one spin up (ms = 5]

: _ 1 g
the other one spin down ( m, = —E) This number is governed by the rule (2s + 1) =

2. If we are dealing with spin 1 particles the total number of particles that a state can
accommodate = (2 x 1 + 1) = 3. Remember that this rule is applicable only to fermi-
ons.

The restriction on the number particle on the states brings change in the number
of macrostates.

X F;)re a;};almple consider'the distribution of 6 units of energy to a system contaift”
& 2 particles. If the particles are classical, we could see that there are totally 10




StatisTicaL Pavsics 17

macrostates possible (see tabular column p- 12). If the particles are electrons each
energy state can accommodate only two electrons. Thus in the tabular column

macrostates 1, 2, 3, 6, 7, 8 and 10 are forbidden. That is the possible number of
macrostates is only (10-7)=3.

Finally we calculate the probability P(g) in quantum statistics and their func-
tional form. :

DNW, |

We have P(g) =1 _———
NY W,
Where i runs over all macrostates. In quantum statistical mechanics the multi-
plicity in each macrostate is one i.e. W, =1
e
Particle is spin 3

In our example there are only 3 macrostates. Which is shown below

Energy of the particles
Macrostate 0 | 2 3 4 5 6 Total energy
1 212 10 190 1 0 |0 6
2 2 1 1 1 0 10 |0 6
3 1 2=4-2410-4-0- 1.0 ~10 6
3
> NW,
P e ::L=l_.
©O=NSw
P(e) = N, W, +N, W, + N, W,
N (W, +W,+W,)
In quantum statistical mechanics
W, =W,=W, =1
P(e) = NN , N, +N, +N, =N total number
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18
24241 1
= —==0333
a4 5%x3 3
2+1+ 1
PO==573""3
0+1+2 1
Siseeas s
0+1+0 1
P(3) = =S 00067
() == 15
Pl 2 67
5.3= 015
P 2V E G
5.3 5

0+0+0 =2=O.OGO

P(6) =
@ 5:3 15
Plotting a graph between energy on the x-axis and probability P(g) on the Y-axis

we get a graph shown in figure.

0.4
0.3

o

™ 02 \\

0.1 N,
0
2 3 4 5 6

0 1
£

Figure 1.2: Probability versus energy graph for spin % particles

The graph is not approximately exponential but flat near ¢ = 0 then drops rapidly

to 0 for the high energies.
A rigorous mathematical calculation shows that

_
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1
Ae™ +1

If we neglect 1 in the denominator, the quantum statistical probability becomes
analogous to classical statistical probability.

P(e) =

Probability for integral spin particles (photon or (- particles)

In general integral spin particles are called Bosons. Bosons do not obey Pauli’s
exclusion principle. Each energy state of the system can accommodate in any num-
ber of particles. In our example of 6 units of energy and 5 particles now which are
bosons have 10 macrostates with equal multiplicities of one.

10
D NW,
We have P(g) = ——
N Y NW,

i=1

10
2N,

P(e)=——F— -+ W.=1,i=1,2...10
N2W,
- i=1

From the table I (page 12)

P(0) = 443+434+242+34+24+14+1+0
5x 10

P0) =21~ 0420
50

0+14+0+24+1+0+0+3+2+4
s 5% 10
Py =12 ~0.260
50
0+0+1+0+1+0+3+0+2+1
i 5x10
8

M=o 0160
P(2) 50
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0+0+0+0+1+2+0+1+0+0
5x 10

P(3) =

P(3) =—=0.080

=i
50

0+0+1+14+0+0+0+0+0+0
5% 10

P(4)=

P(4) = = =0.040
50

:O+I+O+O+0+O+0+G+0+0
Sx10

P(5)

P(5) = —— = 0.020
50

P(6)=I+0+0+0+0+0+0+0+0-|~0
Sx10

1
P(6) =— =0.020.
) 50

Plotting a graph between energy ¢ and the probability P(e), we get a graph
shown in figure below. .
0.5
; ]

o\

P(g)
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a bit more steeply at low energies. A rigorous mathematical calculation shows that
probability is

1
Ae® 1

If we neglect one in the denominator the Boson probability is analogous to clas-
sical probability.

P(e)=

Note : It may be noted that the constant A appearing before the expressions of three
probabilities are not the same. They are different constants.

Example 3
A system consists of 4 distinguishable simple harmonic oscillators each can have

energy 0, €, 2¢, 3g, 4¢....etc. There is a constraint that the total energy is 4g. Find
the total number of microstates.

Solution
We have w t=(N'FQ-I)!:(4+4—1)!
“QIIN-D!  414-1)!
!
Wm': 7. :5)(6)(7:35
4131 1.2.3
OR
_0 . "
> 2e | 3e 4e | W rTe
3 0 0 0 1 wl=4
2 1 0 1 0 W, =12
2 0 2 0 0 W, =6
1 2 1 0 0 W, =12
0 4 0 0 0 W, =1

So W, =4+12+6+12+1=35

Example 4
A gas has two particles a and b. How these particles can be arranged in 3 states 1,
2, 3 treating particles as a) classical b) having half integral ¢) having integral spin.
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Solution
a) As classical particle

1 2 3
a b -
b a -
ab - -
0 ab -
0 ~. —ab
a 0 b
0 a b
0 b a
b 0 a

Totally there are nine arrangements. i.e., total number of microstates=9. Using 3
simple formula we can calculate W. If there are N, number of particles and g. num.

ber of states, W=g' =3*=9
b) As half integral spin particles

Here a=b=2a

oM N
B O W

1
a
a
0 a a

So there is only 3 microstates. For spin half particles, if there are N. particles and
g states then i

g.! 3!
W — - - =
N.'(g,—N.)! 2!(3-2)!
¢) As integral spin particles

3

: Her a=b=a. Being Bosons an
: in each energy state

y number of particles can be accommodated
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The number of microstates = 6

Using the formula W = (—w
N, I(g. -1)!

We can directly calculate this

wo @3-t 4t
21281 219

Example 5
A system of four oscillator like particles shares 8 units of energy. Particle can
accept energy only in equal units, in which oscillator spacing is one unit.

a) List the macrostates and for each macrostate give the number of microstates for
distinguishable classical particles, indistinguishable quantum particles with
integral spin and with half integral spin.

b) Calculate the probability to find a particle with exactly 2 units of energy for
each of the three different types of particles.

Solution
We have four particles and 8 units of energy.

Treating particles as classical

Macrostate Energy of particles Total
possible 0| 1] 2|3]4]5]| 6] 7|8 |enesy

1 3 041010} 010 0}0 1 8

2 2 1 928 e 48 B0 S W1 3 O ES S | 0 8

3 1 740051 o T WS 0 S S o 1 0 0 8

4 055 .3 0 0] O 1 0] 0| O 8

5 25150510 1 0 1 010 0 8

6 20 E4 00010 1 0] 0 8

¥, 0 1 2 1 O 01502000 8

8 1 1 1 O] 0|1 0|1 0] O 8

9 1 1 0 1 1 0O|0] 0[O 8

10 01 2 1 0 1 ELf0 1 050 8

11 1 Q21 0 1 OO0 0] O 8

12 250020 20 00T 0L iRE 8

13 1 0 1 219 10 1-0-|-0:4.0 8

14 6 D0 (e N8 OON( 1 50 ERS TR | IR (SR e R WS SV 8

15 0|0l 4|0]0]01O0(O0] O 8
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There are no more possiblities. Thus we have totally 15 macrostates.
In each macrostate we have to calculate the multiplicity W.

N, !N IN,UNUN,ENG NI N, ! N!

We can calculate one by one.

41
TR L
|
o
21
4!
Wo=Tiotn
41
i
Ws=i=12,
!

!
W6=f‘-=12,
21

I
w2
21
W.=41-24
41
W, = —=24,
2!

¢r Ol=land1!=1)




StamisticaL Prvsics 25

W= 2 =6
41
W13=5'—=12,
41
%= apr
41
ST

. Over all total multiplicity
Wi =4+12+1244+12+12+24+24+124+12+1246+12+6+1
Wtolal =165

There is another nice way to calculate W __ . If there are N particles sharing Q
units of energy, then

_(N+Q-D! (4+8-1) 11!
el QUN-1)!  8l4-1)! 8!3!

W, =165
b) Probability P(s)

D NW,
We have P(g) =

N>W,

i

1 runs over all macrostates
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Ox4+ 0xI12+ Ox12+ 0x4+ 0x12+ Ix12+ 2x12 +
1x24+ 0x24+ 1x12+ %12+ 0x6+ 1x124+ O0x6+4x1

P2)= = e 4 x 165

12424424 +12+24+12+4 _ 112
4 x 165 4% 165

P(2)=

P2)= 0.170

Treating particles as having balf integral spin

Half integral particles obey Pauli’s exclusion principle. Hence each energy stai
can accommodate only two particles at maximum. From the table we can see thy

 macrostates 1, 4 and 15 are not allowed. Hence total number of macrostates possible

is (15— 3) = 12 since particle is quantum, multiplicity of each macrostate is 1. The
total number of microstates is 12.

X V) 12
YNW YN,
_A=l - i=l
P(B)-N.iwl-étxn W, =1

N] "'N:+N1+N4+N,+)Nh +NT +Nb ’Nu ¥ ?\‘_[‘ 1 N:: -1-.\{]‘:
48 e N e

Collecting only the number of particles with energy 2 units.

P(2)=

.\‘; :0, N: :O. Nﬁ,:o. J\T4:l, st(), N'J:I, N_—_—O_ NN:L N,,:z,
.‘\;:.: ={(). N‘ =1 and \_ =1

0+0+0+1+0+14+0+14+24+0+1+2
48

P(2)=

8
P(2)=—=0.167
45

Treating particles as having integral spin

Integral spin particles can ac

: H_gr . -‘,’:fh; particles can accommodate any number of particles in each energ’
m]&‘ﬁm;- : nurnhcr of macrostates is obvious]
paricies, the multiplicity of each macrostate is one

y 15. Since this being quantu”
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The total number of microstate is 15. Collecting the number of particles from
each macrostate having 2 units of energy we get

N, =0,N,=0,N,=0,N, =0, N, =0, N, =1, N, =2, N, =1, N; =0, Ny =1,
N, =2,N,,=0,N,=L N,,=0, and N ;=4

% W =1
ZNiW’ 15

P(e)=—F— W =15
1

N W
i=1

15

2N

P(e)=—

4 %15

0+0+0 +‘[)7+(_)_+l-}-?_fr-1+0-+~1_t2+()+l+()+4

P(2)
60

2
P(2) = e = . = (.20,
60 5

Example 6

A system containing 4 electrons and 5 « - particles. Calculate the total number of
microstates.

Solution

1
Electron is a spin 5 particle, each electron has (2s + 1) states =2 x% +1 = 2 states.

. Number of microstates of 4 electrons = 2* = 16
« - particle is a spin 1 particle, each particle has 2x1+1=3 states
- Number of microstates of So-particles = 3° =243,

- Over all number of microstates =243x16
= 3888
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nsity of states . T T
Dew f und that how the multiplicity of a state determines the probability to find ,
e fou -

~ c ini o .

svstem in that state. There we considered only simple systems e - dRiing oal;
b [ ! - g S - - o~ -4

few number of particles. Now we are going 10 LR i1 s CORLPLIGMOLE COmpli.

cated systems. I n
Let us consider a system (classical or quantum) comgosed of a ‘a.rge number of
particles that can exist in many different ways. The relative probability for the par-

ticles to have energy ¢ is given by the distribution function P(g) o« e ™ = f(g) Where
B is found to be A (k 1s the Boltzmann’s constant and T is the temperature in
kT

kelvin). The distribution function f(e) tells us that when the energy of the particle ¢
is large, the particle is less likely to be found in the system. Since (&) depends upon
the temperature of the system so also probability. If &> kT, the probability be-
comes more and more less probable.

Here our aim is to calculate the number of particles with any given value of

encrgy €. Thus number is partly given by f(g). The other factor that has to be taken
into account is the multiplicity of microstate. In effect to find the number of occu-
pied states we combine the number of available states with the probability that each
state is occupied.
Caleulation of number of available states at energy &
(i) When the energy states are discrete and indi vidually observable,
In this case the number of available states at the energy ¢ is the degeneracy of
the state (d) and the probability of the state is fle).

The number of particles ( N,) in the system with energy

flz ) is given by

€, and probability

‘.\'-’; i d:’Jf(E.", )

..... (8)
The total number of particles in the system
N=X»N =%"d £
Z . Z I 5/ .. (9)

‘ivherc the summation js carried over af] the Energy states
Remember that for hydrogen gas the degeneracy is 2n?

, for rotational excited
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states in a molecule is (2 + 1), where / is the orbxtal quantum number, and for
electrons it is (2s + 1) and so on.

(ii) For energy states are continuous and cannot observe the individual states.

This happens when the number of particles is exceedingly large. In this case
the energy states are so closed so that we cannot observe them as separate. In
this context we consider only the number of energy states in an interval between

at energies ¢ and e+de. For this analysis we treat £ as a continuous variable
so that we will able to replace summation by integration.

Density of states g(g)

It is defined as the number of available states per unit volume in the interval de
energy g. This is symbolically represented as g(e)de.

The total number of states in the interval dg is
dN=N(g)de=Veg(e)f(ede @ ... (10)

N(g) 1s not the total number of particles but it is the number of particles with
energy g.

The total number of particles in system can be obtained by integrating the above
€XPression.

N '([N(_e)d€= vV {g(e)f(a)ds o (11)

Here it is taken that energy () of the particle varies from 0 to =

Density of states in a gas of particles

Here we calculate the density of states in a gas of particles such as electrons or
molecules. This calculation is necessary in our further studies. For example suppose
we study the thermionic emission by statistical analysis. The space around a hot
filament is filled with a cloud of electrons. To study the properties of thermionic
emission first of all we have to calculate the density of states for further development
of the theory. Another example is suppose we want to study the properties of metals
by statistical analysis. Metal consists of large number of free electrons which are
responsible for all properties exhibited by metals. For the statistical analysis of the
system first of all we have to calculate the density of states of the system.
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Calculation of g(e)

The basis of our calculation is the particle (electron) trapped in a cubical box of
side L. The energy of the particle is given by

2 2 2 2
P @4ptp) W ~(n2+n+n})

_ h'n’

3 iy

we can see that the number of energy states with a particular value of ¢ depends on
how many combinations of n,, n , n, result in the same value of g. Since we are
dealing with almost a continuum of energy levels, we may construct a space of

points represented by the values of n,, n, and n, and let each point with integer
values of the coordinates represent an energy state.

2 2 2 2
where n° =n; +n  +n;

To find the number of energy states, construct a coordinate system with n_, n
and n, as axes. The points with same value of ¢ lie on a spherical surface of radius

2 9 a3 . . - . a .
n=,/n+n’ +n,. The points with energies between € and £+de lie within a

spherical shell between the radius n and n+dn .

The number of available states within a radius n = é ( : 7n’ ]

The factor é— accounts for the fact that

only positive integer values of n,n and

n, are allowed and thus only one octant
of the sphere alone be considered.

The number of states within a sphere

. |
of radius n +dp -_:g.;i(n +dn)}

Figure 1.4: Density of states
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The number of energy states having energy values € and €+ds,

14 14
=——n(n+dn)’ ———nn®
83 : o 837m

==[(+dny ~n']

= g(?mzdn +3ndn® +dn”)

Neglecting dn® and dn’, we get

=2 n%dn
2

The energy states per unit volume

Energy states mn’dn

g(n)dn =
g(n) Volume 2V

But each state is degenerate with degeneracy (2s+1) for fermions.

g(n)dn =(2s+1) 090

e 1
If our particle is electron s = 5

2

g(n)dn = e spin % particles
‘0 3 IIII.,2
We havee = il gives n” = 02 €
or n=+8m %si’

dn =+/8m %8"%&‘:

— -\f 2]'[] %8—%(18
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Substituting the value of n® and n in the expression for g(n)dn, we get

7t 8ml? $
=— gv2m —¢ “de
gdn =G0 h
The volume of the cube V =12, we started with

g(n)dn = *de

Sﬁnm% i
Now we change the symbolic representation of density of states g(n)dn to g(e)dg
since energy states is expressed in terms of energy on the R.H.S.

S\Em"n% }
£

Le. g(s)dg = h3

de

In general g(e) =

42n(2s + Dm? 4
T

Note : For classical particles, the degeneracy is 1 and h=h,

3
g(S)d€=i@-——aédE

0

Density of states in terms of momentum

We have glexde = N2RCs+Dm? 4
2
Using &= P_ de = pdp
2m m
e =225+ hm? p pgp
. 2m)} m
g(ﬁ)ds = w@
h g
ie. _ 425+ 1)p3q
g(p)dp = _______h_i_g__g
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This is called density of momentum states. This is the simplest formula, you can
apply this anywhere.

2

4np
h,

dp

For classical particles g(p)dp = (- 2s+1=1)

For classical particle

4ntp’dp
h

)

(i) Density of states in 3D, g(p)dp =

2mpdp
h

(ii) Density of states in 2D, g(p)dp =

d
(iii) Density of states in 1D, g(p)dp = HE
0

If the particle has degeneracy, multiply density of states with corresponding

degeneracy and replace h, by Planck’s constant h.

Density of states in a gas of photons

To find the density of photons we need not go for all the procedures that followed
in the last section. We simply started with

4n(2s+1)p°dp
h3
For photons s=1, .. The degeneracy is found to be =2x1+1=3. However

photon has got only two since third state is not permitted. These are actually leading
to two polarisations of electromagnetic waves.

g(p)dp=

8np*d
g(p)dp = Ll
h
de
Foraphoton p= = dp=—
c ¢
8n ¢* de
dp=a ®
g(p)dp ok o
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)
8necde
hJ C-

i.e., the density of states of photon gas

g(e)de =

8ne’ ‘A
ge)= - - g e S R (14)
Example 7 .
Calculate the density of states of helium gas within an interval of 0.0002 eV
the most probable molecular energy of 0.0086 eV at a temperature of 200K,
m, =3727MeV

Solution

de=0.0002eV, £=0.0086eV, m,, =3727MeV

4n/2m?
Density of states, g(e)de= "Fih:‘r'n_

glds (Treated as classical particle)

: 2\%
The above equation can be re-written as g(e)de = M 85

d
(he)’ :

Putting the values me* =3727x10%V, £ = 0.0086¢V and he =1240eV nm

i 4mV2(3727x10% V) x(0.0086¢V)! x (0.0002¢V)
(1240 nmeV)*

o(e)de = V2 3727} x10° x0.0086* x0.0002
1240° nm’

g(e)de=39.3nm2

g(e)de is the number of states per unit volume (Ims)
Converting into m?

39.3
gle)de = e 7 =
(]O—%‘m)} 39.3)(10 7m 3
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Example 8

A proton 1s confined to move in a nucleus with radius 10" m. Its momentum
nE _— 19 o 2 -y .
cannot exceed 107" kg ms™'. Calculate the over all number of states.
Solution

p=10"kgms™, r=10"m

2
L

Anpdp | .
We have g(p)dp = 3‘ P integrating we get, over all density of states per unit

volume

- Plll.l.\ 4np2dp

0

— 4TC p::ﬁll:(
3 h’

_ 4x3.14x(107°Y
3x(6.64x107*)’

_ 4x3.14x10"
3% 6.64°

=1.43x10*

over all number of states =1.43x10™ xV

=1.43%10* x%nr"'

=1.43x10% x%3.14 x(107)*

=60
Example 9
The universe is filled with photons left over from the big bang that today have an

energy of about 2x 10*eV corresponding to a temperature of 2.7 K. Calculate the
density of states of photons in an interval of 10”eV.

Solution

e=2x10"eV, ds=10"eV
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8ne’de
Wehave  8(E)E=~ 55~

8x3.14x(2x10*eV)? x107°eV

(1240eVnm)’
. 8x3.14x4x107 x10°°
BE)dE =207 nm’
3.14x4x107"
g(e)ds = S

" 1240° x(10°m)’

_ 8x3.14x4x10"
C 1240°m®

=529%x10° m™.
Maxwell-Boltzmann distribution functions

To calculate the total number of particles in a system we require not only density
of states but also distribution function f(g). Depending upon the nature of the system
of particles such as classical, fermions or bosons we have three types of corresponding
distribution functions. For classical particles the distribution function is called
Maxwell-Boltzmann distribution function denoted by f(&). For fermions (half integral

spin) the distribution function is called Fermi-Dirac distribution function denoted
by f;,(e). For bosons (integral spin) the distribution function is called Bose-Einstein

distribution function denoted by fyz (¢). Distribution function tells us how the particles
are distributed among different ener

: d gy states of the system. Recall that our distribution
functions are probability distribution functions,

Maxwell-Boltzmann distribution

Here our aim is to calculate
the density is relatively low,
between the particles is
individual particjes may
not show quantum behavic

the number of particles
This means

large compared

in a classical system in which
that in such systems the average spacing

with their de-Broglie wavelength. The

nergy levels but the overall
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The constant is taken as A in order to have the same form for all the three
distribution functions.

Now we will apply this to calculate the number of particles in a classical system.
Consider an ideal gas enclosed in a container of volume V. Let N be the number
of molecules in the container at temperature T. Let N(g) be the number of molecules

in between energy ¢ and €+ de. We know that (Recall equation 10)

N(e)de=Vge)f,z(e)de .. (17

Substituting for g(e) from equation 12 and f,;(g) from equation 16, we get

N(E)dgzvélﬁnm £ }§§§+1)A Siw-1ELaY Do (18)

Evaluation of the constant A~!

N(g)de gives the number of particles in between energy ¢ and £-+de

.. The number of particles
N = [N(e)de
0

Since this being a classical system the variation of energy can be taken to be 0 to
00,

N

: 3 -1 =
z V4J§nmh§25+l)A jdes

0

Using the standard integral

Ix"-e"“"dx =n!(a)™"
0

@ =iei
Ie:%e' ¥e = [l]' (—l—j
! ZENT

Jr

PR e
2( )

=
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V221 m? (2s+ 1) (KT)?A™
— kl}

N

N = %2—(25 +1)2nmkT) A

Nb’

A= 3
o V(2s+1) (2nmkT)?

e (19(2))
Substituting this in equation 18 we get

V4\Enm%8% (Zs+1)e_% . Nh’de

SNie= :
e h? V(2s+1) (2nmkT)?

2N

N(e)de = Sy sie" o de

..... 19
V1 (KT)? (19)
This is called Maxwell-Boltzmann
energy distribution law.
The distribution of number of

particles N(e) with energy ¢ is shown
in figure below.

N(g)

It can be seen from the graph that -
N(e) increases with energy. Itrisesto a
maximum value, the corresponding

energy is called most probable energy & € €

e

(Sp). Itis fOHnd tobe ‘%‘kT (See exa_rnple Figure L5

. : The Maxwell-Boltzmann energy distribution for
9). After reaching maximum, N(g) molecules, showing the most probable energy
decreases to zero as en

: CIgY increases, % 2ndthe mean energy ¢, . The shadeg strip
This shows that it 1S rare to find a  TePresentsthe number of mole

. cules dN with en-
molecule with energy mych greater than  “"&i€sbetween ¢ and ¢ +dg
l;T The number of molecules dN within
the energy can be calculated py :
Y the equation 19
225 molecules cap . e Moreover the average energy of the

o5
R : m =3 kT. (se; example 10). This
tatistica] analysis, Sult. This 8IVes us a justification
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Note: The expression we derived for probability p(g) enables us to calculate the

relative population of particles in various energy states. Using p(&) o« de” ¥,
where d is the degeneracy of each energy level. (see example 11 and 12).
Example 9

Show that the most probable energy £, = $KT in the case of Maxwell-Boltzmann

distribution.
Solution
2N y -
We have N(g)=——c’e ©
Jr(kT)?

To find the maximum of N(g), differentiate the above with respect to £ and put
equal to zero.

dN(g) 2N Fe_ﬁ, L 1y w]

de  Jr@D)? kT 2

=

dN(S)—O ives £=¢&
4 gives £=¢,
PRS- -
€
ER IR
BT =2 2
:
or i=ls‘i
K[ 2 ¢
1
Epzsz
Example 10

Show that the average energy of gas molecules obeying Maxwell-Boltzmann
distribution is €_ = %kT

Solution
Total energy of the whole gas molecules
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x

E= j N(g)ede

8

substituting for N(g), we get

'E:j———~J_2N %s%e_ﬁde
* Jr(kT)?

o

0 —ax = —n-1
Using the standard integral Ix e “dx =nl(a)
0

£ —%—l
e AN
.([se dg_[l}(kT)
=2 JrkD) gt

B=—2N 31 Lant

" Jnn)t 22
=3Nk’r
“
or E:EkT
N 2
Sm :_:ikT
2
Example 11

( Ifxltrzgen gﬁ;_as cogsxsts of a sequence of vibrating excited states with energies
n+1) 'm, n=0,1,2,.... If the leve] spacing is 0.3eV. What is the relative
population of first excited State (n =1) and the ground state (n=0). T K
k=8.625x10~5eVK-’,Degeneracy:l =
Solution

We have p(g) o ekﬁs
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For the first excited state n =1

g, =-z—hm

For the ground state n =0

1
80 = Ehﬂ)
p(g,) o e

p(g,) oc e

=8
P(el) * ¢ _8-5(81-80)

pe,) e %

_ (8,—=€q)

g, —&,=0.3eV
k =8.625x107eV K™
T=1000K

= _ Q.3eV
p(e,) _ o 86254075V Kx1000K

p(g,)
::E:l; = e_ 083:;‘; s e‘3'478 =0.031
0

Example 12

In a gas of atomic hydrogen at room temperature 293 K what is the number of
atoms in the first excited state at ¢ =10.2¢eV, expressed as a ratio to the number in
the ground state. b) At what temperature would we expect to find % as many atoms
in the first excited state as in the ground state.
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Solution

We have

stk Prveics, SPECTROSCOPY & PHOTONICS
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The degeneracy of hydrogen atom is 2n®

b)

Using

N o de 4
NI o (l,c P
N, oc d,e P
_N.—z.._—_;.(i-z..e ‘ﬁ“') '"‘)
1 dl
d, =2x1*=2
s =% 24 =]
&, —&; =10.2eV

k=8625x10"eVK™

» Let o~ =10" gives x =-175.45

=1.419x107'7

T=293K
10.2eV

_N_; . 8 e_ B.625x107 VK %293K
N, 2

N,

—2 — g0

N,

N,

=2 4 =175.42

N x10

N,

—2-4 =175 40045

N, x1077-10

-1

N —I~6~O.I given. T= 9
N2 SRy
"‘—“:46 kT

Nl
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1 102

—=d4e K
10
10.2
—1-=CH"T‘
40
102
v et =40
—]&2—:ln40
KT
kT = 20-2 =£=2.76 eV
In40 3.69
T:2.76= 2.76 s 2.76 ot
k  8.625x107° 8.625
T=32x10*K

Distribution of molecular speeds

The number of molecules with energy in between ¢ and £+ds is given by

N(e)de = — 2N __ghe e

; 1 .
Using €= Emvz, de =mvdv in the above equation, we get

Rl

N(g)de = ——gﬁ—?[lmvzj e'i’ﬂ%JT , mvdy
2

Jr(kT)2 \2
Now the number particles with energy & is written as a function of v, we have
2 % mv2
N(v)dv = N\/: [E] vie gy (20)
n \ kT

This gives the number of particles with speeds in the interval dv at v.
This equation (20) is called Maxwell-Boltzmann speed distributio law.
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Discussion
Case (i)
ifv=0
N(v)=0
It means that no molecule has zero speed
Case (ii)
For small value of v
mz
my’ m
de 2EF =
¥T Y «lande 1
N(v)ec v°

Thus, value N(v) increases parabolically with increase of v and attains a maxi-

mum value for a particular v called most probable speed.

Case (iii)
For large value of v

mv

ZkT

_my?
N(v) ec g 2KT T
Thus N(v) decreases exponentially with N(V)
increase of v.

When we plot a graph between n(v) and v,
the curve starts from the origin

R

» 1 and the exponential term (e 2%t } dominates over v2. Hence

-
-

(v=0, N(v)=0) then rises parabolically
(N(v)a.v?) and then falls exponentially.

»V

— Vrms

RMS speed, most probable speed and mean speed Figure 1.6

RMS speed
The mean square speeq (V%) is given by

ol
‘N‘f V- N(v)dv
)




SratisticaL Puysics 45

é @ mw2
=2 _ m |2 4 24
v —4Tt(2KkT) i[v e vl — S T e e e 21)
0 mv™

Evaluation of I Ve v
0

Put v> =x then 2v dv =dx

dx dx
v 2k
oD l‘rl\c'2 mx

3 oD
=0 = grf o B_Yod (2&)2
¥ 4“(2«:1&) g™ m

) S
¥ m

Taking square root on both sides, we get the rms speed

5
— 3l ,(2kT )5 |
8 m | '
Putting this in eqn (21), we get Sasey
¢
|
|
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3 2

-2_1..00 m |2 3 -TC
i N! 4"N(2nk'r) it 4

sz

B
. m |27 3
V“m(znkr) f O AR S I 24)

2, o
Evaluation of the Integral _[ vie 2Ty

put v’ =x ..2v dv=dx
dx _ dx

2v 2\/;

or dv=

o _dx
_[ve ZkTdv=J';ist e S

0 2Vx

Bifdim:
0

M[t—-ﬂ

Using the standard integral

Z%(D'(zk'r)— _'QI"(ZH)

Putting this in eqn 24, we get
e s
- =4n(__...m )2 .1(_21:_'1") — [8kT
27kT) 2\ m /| VYmm
OB e @s)

From eqn 22, 23 and 25 we can see that

Vo2 ¥ 2 ¥y
(see the figure 1.6)

All equations derived so far (for V., v, and V) from statistical considerations
are found to be in well agreement with the thennodynamlcal experimentally verified
equations. This is actually the strength of statistical mechanics and its postulates.

L N 4
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s more important than Maxwell-Boltzmanp en.

s distribution law 1 :
Maxwell speed dis LV v__..) predicted cap be

ergy distribution law. Because all the parameters (V.
measured experimentally.

Experimental determination of molecular speeds

The experimental arrangement consists of an oven enclosed in a box provideg
with hole on one side through which a stream of molecules are escaping. The hole j |
made small enough so that the distribution of speeds inside the oven is not changeq
The beam of molecules is allowed to pass through a slot in a disc attached to an axje
rotating at an angular speed ®. At the other end of the axle there is another slotteg
disc. The slot on the second disc is displaced from the first by an angle 0. In order
for a molecule to pass through both slots and strike the detector, it must travel through
the length L of the axle in the same time that it takes the axle to rotate by the angle g,

0
'Thust=£‘.=_9_ ( =t and m:_J
vV ®© t t

Keeping L and O fixed, we can vary ®, measuring the number of molecules
striking the detector for each different value of @ enables us to measure the Max-
well speed distribution. For a particular @ measure the intensity from the detector.

Increase @ gradually step by step each time measure the intensity from the detec-
L
tor. Plot a graph between v (v = T‘”J along the horizontal axis and intensity along

the vertical axis we get a graph perfectly in agreement with Maxwell’s speed distri-
bution law. See the experimental arrangement and the graphical result shown below.

- /
o/
Molecular beam k|
5 Detector /
. cor 04 708 12 16
Velocity
; : Figure 1.8
= gu
igure 1.7 Result of measurement of the distribution of

is obtained from the Maxwell speed distrib

atomic speeds in thallium-vapour, The solid 1i%°
b tion for an oven temperature of 870 K.
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Ip tl.ie experiment what we measure is N(v)dv. The range of velocities is dv,
determined by the width of the slot. To collect the number of particles with velocity

v, we have to make dv, so small. i.e., the slit width is so small. If you make the slit
width zero, dv = 0 thus N(v)=0.

Quantum statistics

Maxwell-Boltzmann statistics can be applied to classical particles which explained
the energy and velocity distribution of the molecules of an ideal gas to a fairly large
degree of accuracy. The classical particles are identical and distinguishable. They
are distinguishable since the average spacing between the particles is large com-
pared with their de-Broglie wavelength. Moreover while deriving Maxwell-
Boltzmann distribution law it has been assumed that all the energy levels are acces-
sible to all the particles of the system. However there are particles which are indis-
tinguishable. They are indistinguishable since the average spacing between the par-
ticles is small compared with their de-Broglie wavelengths. (i.e. particles wave func-
tions overlap). Among the several indistinguishable types of particles some of them
obey Pauli’s exclusion principle and some of them do not. The fermions (half inte-
gral spin) are indistinguishable particles which obey Pauli’s exclusion principle and
certain energy levels are forbidden to these particles. The bosons (integral spin) are
also indistinguishable particles which do not obey Pauli’s exclusion principle and
can accommodate any number of particles in any state. MB statistics failed to ex-
plain the phenomena exhibited by these particles. To explain these quantum statis-
tics was developed. The quantum statistics can be classified into two. They are

- (1) Bose-Einstein (BE) statistics

(ii) Fermi-Dirac statistics.

Bose-Einstein statistics :

This statistics was developed by Indian scientist S.N . Bose and later on devel-
oped by Albert Einstein. The only difference between the MB statistics and BE
statistics is in their distribution functions. It is due to the indistinguishable nature of
bosons its distribution function is different from that of classical (MB). The Bose-
Einstein distribution function is given by

Ip (Bl =amr———
e (8) A1 SEATSE - e

The constant A, can be evaluated by normalising f,; (¢). The normalisation
depends on the total number of bosons. In the case of photons, where the number 15







Sratisrica Physics 4

S0 fyp, (£) =0 for T 0 and ¢ large. This means that the probability of occu-
pying higher state 4t very small temperature (T —» 6 is zér6.

When g -0, T is also small, then

] ] i

et —— 1 &

f. ff’}'?'-f — -
B % B 4 .
2 1~-1 O
e~ ~1
This shows that the probability of occupying ground state (£ —10)) 2 very smel]

5 3

temperature (T — 0) is very high (fy. (£) = ). This effect is known as Bose-
Einstein condensation.
In the case of fermions, we have

e

E—'EF
exT +1

For e >¢. and T — 0, then e—¢; is +ve

1 1 1
g

This shows that the probability of occupying energy state € > &, by the particle is
zeroat T— 0. In other words at T — 0 all particle occupy the energy states € <& .

For e<gg and T — 0, then £—¢&; is —ve

: 1 1

f &)r=— - — = —

Sl ety
el O ] -

This shows that the probability of occupying state with energy & <& at very small

_température (T — 0) is one. The three distribution functions fy , fye and f, are
plotted against energy & are shown below.
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Figure 1.9: The Maxwell- Figure 1.10: The Bose- Figure 1.11: The Fermi-Dirg,

Boltzmann distribution Einstein distribution function distribution function
function

The following also may be noted from the graphs.
(i) Allof the distribution functions fall to zero atlarge values of €. For £ >> kT the
occupation probability is very small.
(i1) When ¢ is very small (¢ - 0)
fip (£) is finite
fye (€) is infinite

fe, () is one. It can never be greater than one.

(iii) The normalisation constants changes with changing the number of particles of
the different distributions. Because normalisation constant depends on the
number of particles on the system. The number of particles is determined by
integrating the distribution function f(¢) after multiplying it by the density of
states g(e)de and volume. In the case of MB distribution when the number of

particles increases the intercept rises, thus raising the entire curve. This is as
follows

Wehave £, (e)=Ae 1
To find the intercept put ¢ =(), then L (8)=A""

But A™ « N see equation (19(a)).
In the case of FD distribution, we have

fFD (8) = _9__?‘1_——_"

e 41
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For £ <g, the intercept is 1 at T = 0 when the number of particles N increases

gp Increases to accommodate large number of particles as a result the intercept is
kept constant at value one.
Fermi energy ()

To introduce the concept of Fermi energy consider a gas of electrons described
by the density function g(e) (see equation (12) and N(g) is given as

N(e)de =Vg(e)f(e)de

4n2 (25 +1)mPe7d
N(e)de = v 2EV2Zs 2 Dm e de e (29)

¢ =l

This equation shows that at T =0, when ¢ increases N(g) increasesupto € =€,
according to N(g) oc g'?

When a graph is drawn between N(eg) and &, we get almost a parabolic curve
governed by N(g)xce'? upto e =¢,.

The probability of filling the energy state is governed by

ffﬁ):“;%—“
SRISES
f(e) =1 for e<g, at T=0K

This shows that up to € =¢;, all energy levels are filled.
When €>¢; at T=0K

f(e)=0 N(e) T=0
This means that € > g at OK the levels are
completely empty. This is shown in figure IH :
12, &
The above discussion enables us to define €
8F
Fermi energy €. Figure 1.12: The occupation probability
of electrons at T = 0K A
o

Al

&

9
RGN




- shown in figure 1.12.
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The Fermi energy is the energy value upto which all the energy states are filled 5,
e Fer

0K and above which all energy states are empty.

When T >0, at £=¢&;, we have

_ J=iter s
fep ()= £-ep Ef 202
gt 1

Thus the Fermi energy & at T>0K 18 | N(e) T>0
that energy level in which 50% of the levels
are occupied and 50% are empty. This was 1 t 1

When we draw a graph between N(¢) and

¢ at T>0K , we get graph as shown in fig- e
ure 1.13. ' Figure 1.13: The occupation probability
Limits of classical statistics efsleaonsat 2Ok

For particles to be treated as classical it should be possible to neglect its quantum
behaviour. This is possible when the de Broglie wavelength () is much smaller

the average separation between the particles d. i.e. for a classical particle the only
criterion to be satisfied is

A
Axd or E«I (30)

—-}}__ h 8._ pZ
P 2me  2m
Energy of classical particle is of the order of kT. lese=kT
h
V2mkT

When there are N particles in volume V.

We have A

A=

—

The volume of ope particle =V
_ N

. 4
fa s ds . IR
FT = = where r is the radius of the particle,
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r =~3—[X}~,1_.Y_
47\ N 4 N

(6

The separation between the particles

1 1
3]
4) \N

1

V 3

or dz(—]
N

Putting the value of ) and d in equation (30)

L
3
we get : (E) = ) R G gy oy e gy S (€29

N2mkT \ V

This is the condition to be satisfied for treating the particle as classical. Recall
our expression for normal constant A~ from Maxwell-Boltzmann distribution.

NhB

Al = 5
V(2s+1)(27mkT)?2

(see egn 19(a))

From equation 31, we have (cubing it)
maitele T
V (2mkT)

3

This gives us At e e S LR e @7

This says that the normalisation constant of the Maxwell-Boltzmann distribution
must be very small for the validity of the condition for classical particles. In other
words the number of occupied states in the gas is much smaller than the number of

available states. .
Note: A rigorous mathematical derivation shows that the de-Broglie wavelength is

h
A =—=—— using this we get the exact result.

2mmkT
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Example 13 = .
i Check whether the Maxwell-Boltzmann statistics can be applied to the f ollowip,
8 - | | R
’ | (i) A nitrogen gas at standard temperature (T = 293 K) and pressure 1.0 x 10° Ny,
(ii) Liquid water at room temperature Z12C.
! :
1 Solution
- A ;T 27
:f (@) P=10x10°Nm~, T=293K, my, =28u lu=1.66x10"kg
J
; Using -~ PV =NKT, we get
i _
n;‘ | e SRR R
£ V kT 1.38x107%x293 _

1/3
Pl b : T | N
For Maxwell-Boltzmann statistics to be applied SmKT [V) must be very
1 much less than one.

3 T [_1_\1_]%_ 6.64x10 x(2.47x10%)2
| d J2x28x1.66x10°7 x1.38x10 2 x 293

N

A 664x107"x291x10°  6.64x2.91x10%

d 193.87x10%  193.87x107%
A 6.64x0291
1= To3g =0:009=0,01

| Since P 1, it is possible to apply MB statistics.

e P N :
n F T W ey L T
(i1) For water v

d-"-l 3 -3 = 2L - =
1=10"kgm™, m =180 = 18x1 66 x10 “kg and N =1 (one molecule)
N 10°

—

V Texiegrios =325x10%
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A 6.64x 107 x (3.35%107%)"”
d  (2x18x1.66x107 x1.38x107% x300)""

A _6.64x107" x3.22x10
d 157.3x107%

A _2138x107% 21.38

= = =0.14
d  1573x107” 157.3 :

. A . :
Since qns not very much than one, so MB statistics cannot be applicable to

liquid water at 27°C.
Example 14
For what temperatures are the atoms in an ideal gas at pressure P quantum me-

chanical. P=1.0x10°Nm . Take H, gas.

Solutien
| h (NY : .
We have _gk? v >>1 squaring on both sides, we get
' (NY >1
2mkT | V
O ok “\7)
Using PV = NKT gives %—=%
2 P 3
T« Smk (-k—,l—,)
: 2pt
< h*P

1
|
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6
5

hp*
(2m)*k

T
or

Substituting the values of h, P, m and k

(6.64x107)*(10°)°
(2x2x1.66x% 10‘27)§ x1.38x1072

T

(66.4) x10* x 100
(4x0.0166)x10™ x1.38x10™

(66.4)° X107

Tx =t =
(4x0.166)° x1.38x10

(66.4)* x107
(4x0.166)° x1.38

Tx

153.7x107  1.537
0.782x1.38  0.782x1.38

T<1.42K

This shows that only when the temperature is very much below 1 42K, hydrogen
gas can be treated as quantum mech

anical. i.e. at ordinary temperatures it is a classi-
cal system.

T

Applications of Bose-Einstein statistics
Black body radiation

The .elec-u*qmagnt?ﬁc radiation trapped in a cavity and in thermal equilibrium with
the walls of the cavity are termed ag black body radiation, In thermal equilibrium
condition, the black body radiation C

| : an be considered as the photon gas. Photons
have spin 1, so they are bosons and obey Bose-Einstein statistics.

N(e)dg = Vg( &)ty (e)de
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Z

The density of state g(s) = 5:‘1151 Gaecon 1)
%
e : 1
and the distribution function fe(e) = -
A et 1

In the case of photons, the normalisation constant has no relevance since photon
number is not conserved in nature. So we set A, =1.

Thus NENE = 2
e T —1

since each photon has energy &, the energy carried by N(g) photon is

Vvere® d
eN(e)de = 83“‘:‘ =
h'c eﬁ =3

eN(e)de 8ne’ de

or T o

since Total energy

= Energy density u(g)

Volume
8ne’  de
wede=—er—— (32)
ekl -1

From this the total energy density over all photon energies can be calculated by
integrating the above equation.

b 8n T e'de
fie. e .[ Blsiag = e’ .[ & e e S (33)
0 0 ekT __1
¢ R
L KT

ds = kTdx in the above integral,
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Ep———————— ]

X
e!"‘l {)c —]

w Bryis ] % 'de
j (kT)‘X 5(kT)dX = (kT)4 I l__.__
0

4
n
The integral can be easily calculated to be 1 (see example 15)

8n(kT)*  8n'k*T
= ~—
I5h'c® 15k’
From this we can calculate the radiant intensity R which is the radiation energy
emitted per unit area per second.

..... (34)

et g c
Radiant intensity, R= Zu.

¢ 8k’

S T
415h°c’

1.4
R_an

e Y

51,4
A“2nk

where = .
15h’¢?

Substituting the values of k, h and ¢ we get A = 5.67x 10" Wm 2K~
This is the famous Stefan’s constant denoted by o

R=0oT" el )
This is nothing but Stefan’s Jaw.

The above discussi
on shows that Bose-Einstein’ K b SRS
ment with Stefan’s law. fein’s statistics is in perfect agree-

From equation 32 : ily arri
eq 32, we can easily arrive at Planck’s radiation law.

Put €=hv in equation 32 we get
u(v)dv = M By

h'e? M
e!u __1
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| 8rhv’  dv
u(v)dy = — - :
& eg% DTN S (36)
This is the famous Planck’s radiation law for black body radiation.
Planck’s law in terms of wavelength
3
We have u(v)dv = 87&?’ h‘fv
e T —1
Using V=~ and dv=—->d\
sing V=5 and dv = v
2 dr
R
< ATA e'ﬂﬁ =3
8mhe)
s =——da (37)
e T —1

This is the Planck’s radiation law in terms of wavelength.

The Planck’s radiation law which is in pérfect agreement with experimental re-
sults. Now we proved that Planck’s radiation law can also be derived usipg Bose-
Einstein statistics. It may also be remembered that Max-Planck derived his radiation
law two decades before the development of Bose-Einstein statistics.

Example 15

Show that T
0

Solution

]E e —ax ‘Txg("x‘D—ldX =Tx3e"‘(1-e'“")“dx
- 1 g Q J

0 e

since e ™ <1, we can use Binomial expansion

0
= I e X(l+e e+ +--)dx
0
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@

e e s

E. T n.—ax ~n-1
Using the standard integral jx e "dx =nl(a)
1 0
F"I
;, T x3 dx =i3!(m)_3—] = 6‘2—1—4
|_1I o 1 = ex = il
g r* S
fi =6 90 ( ;‘i m* 90
“ fn
A T
Example 16 :
Calculate the number of photons per cm?® in a volume filled with radiation a!
. =
4 300K given j dx =2.404,
1 o€ —1

Solution

" _ Tha;) number of photons having frequencies between v and v+dv in volume V18
given by

n(vydyv = 8753\/ vid

hy
= g

The total numbe : ;
odein: umber of photons per unit volume and with all possible frequencies

(see eqn 32, where ¢ = hy )
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=_1_w _8nf vidy
N Vjn(v)dv thIT

hv hdv _

put T =X and kT =dx
N:@T(gr x2dx zgf_c(g)“jf x2dx
C30 h ex_l C3 h Uex_l
3
or N = 32K 2 404
¢h
_19.23x3.14x(1.38x107'%)’ (300)°
(3x10')’ x(6.62x1077" )’
=5.4x10° cm™.
Example 17

Sunlight arrives at the earth at the rate of about 1.4 kWm ™. The average radius

of the earth’s orbit is 1.5x10" ' m and the radius of the sun is 7x10®*m. Calculate
the surface temperature of the sun.

Solution
The solar energy received per second per unit area =1.4 x 10> Wm ™

The total solar energy received per second by area of a sphere whose radius r,

is that of earth’s orbital radius is 47r” .
=1.4x10° x4’

=14%10°x4x3.14x1.5x10"!

=3.96x10*W il 1)
This is equal to the total energy radiated by the sun per second.
According to Stefans law, the energy radiated by a perfect black body per second
per unit area

R=0cT"
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. The total energy radiated by the sun per second

-':4Tlil"\.2($T4
—4n(Tx10%)* x 5.67x107°T*

=3489.55x10°T*
Equating eqns 1 and 2, we get

3489.55x10°T* =3.96x10°°

26
4= 396x107 4 1348%10'

...... 2)

. = 3489.55x10°
T* =1134.8x10"
1
T=(1134.8x10"%)% =5.8x10°K.
Example 18
What is the average energy of photons in eV present in 1cm? of radiation at 727°C
Solution

We have, the total energy per unit volume is

_8rk'T
u= 150 (See eqn 34)

Total number of photons per unit volume is

33
N =§1%x2.404 (see example 16)

Average energy of photons

__ mkT

== b XL
N~ 15x2.404

_ B.14)*x1.38x10™ x 1000
£2:19) x1.38x107°x1000
15x2.404

=3.72x107" ergs.

7=322x10"

16x102 ' = 02325¢V.
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Example 19

A black body is radiating at a temperature of 2.50x10°K. a) What is the total

energy density of radiation. b) What fraction of the energy is emitted in the interval —
between 1.00 and 1.05 eV. GereoE

Solution
a) T=250x10°K.
Total energy density of radiation is
8r’k*
A=
15h°’°

i 8x(3.14)° x(1.38x107)* x (2.5x10%)*
15x(6.64x107)’ (3x10%)°

= 8x(3.14)° x(1.38)" x(2.5)* x10°*
15%(6.64)* x3* x1077®

=z 8x(3.14)° x(1.38)" x(2.5)* x107*
15%(6.64)° x3’

3459.5

us————=291x10"
118.57x10
u=0.0291Jm">

u=&9}m-e\hn“3
1.6x10

u=1.82x10"eVm>

b) T=25x10°K, £€=1.00eV, de =0.05eV
The energy emitted in the interval

: 8
u(e)ds = S de

KT =8.625x107° x2.5x10°eV =0.216 eV
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| |
J' 8x3.14x (1eV)’ x0.05¢V

o - — —‘__-’-______--—_""_-——_-_.‘
x: 4 U(s)da eo.‘z'lm =

(1240 eVom )"[

'J 25.12 eV

e

(M = g am <107 10148

25.12 eV
~124°10°)’m® 101.48

~6.49%x10"eVm ™

. u(e)de  6.49x10" _
The fraction, (u = o i0” =0.036

Applications of Fermi-Dirac statistics

The most important application of the Fermi-Dirac statistics is in predicting the
behaviour of free electrons inside metals. These electrons are responsible for the
high conductivities of metals like copper, silver, gold etc. These electrons freely
move about inside the metal, colliding against the fixed ions. Thus they form a sort
of gas known as an electron gas. Since the electrons are fermions they obey Fermi-

Dirac statistics.
According to Fermi-Dirac statistics, the number of electrons having energy be-

tween ¢ and €+de is given by

N(e)de = Vg(e)f, (e)de

: 8nv2m’e’
The density of states g(e) = O (see eqn 12 where s =)
The distribution function f, (¢) = — 1
e +1

N(e)de =

v 8\/2_7tm 3:8% de
3

ety

..... (38)

et 41
This N = SArE. Y
15 15 known as Fermi-Dirac distribution law of electrons.
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Expression for Fermi energy (¢,)
The Fermi energy 1s defined at OK. At T = 0K, the distribution function

fen(8) =1 for e<g,
=() for e>¢g,
Integrating equation 38, we get the total number of particles.

‘I V8\/51tm""'t:""

1.8 N=
h.‘
0

de

At T = 0K, the minimum energy of the particle is 0 and its maximum value is &

V8 1%
h 0
V82mm'® &
e §
2
4]
16+/2Vm® )
NZTE% ..... (39)

: 3Nh’ h* ( 3N
or €

" 16v2Vm' 2im (87

h? (3N )
or Er = 72-1; _8‘J't_v ..... (40)
This is the expression for Fermi energy of electron system

Average electron energy at absolute zero (0K)

To calculate the average energy at OK, first all we have to calculate the total
energy E possessed by the electrons at OK.

Total energy at OK, E= 'f eN(g)de

0
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Substituting for N(¢)de from equation 38 by putting T = 0K, we get

V8\/§nm'§
N(g)de = T de

E- V8\/€Hm Ieg'da
b’ 0
o V82t & |”
~n 572
0
16V2 Vam'®
E=—0grrs—6 - o i meie (41)
Eqg 4l |
Eq 39 &ives
Bois
N §5°F
E Total energy _
N~ Total number _ €0> average energy per electron.
Thus EO _— -:Si.gp‘
Example 20
In copper there is one free electron per atom. Cal i
. - Calculate th _
electrons in copper. e Fermi energy of free

Given: Atomic weight of copper 63.5 g/mole

Density of copper = 8.94 x gem™
Avagadro number = 6,02 x 105

atoms /mole
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Solution
Number density of free electrons in copper
= Number of atoms per cm®.

6.02x10%

N

), v 635 % 8.94 = 8.48x10% electrons cm
N
v

=8.48x10% glectrons m.

. h? ( 3N
HEng = o= 2m(831tV)

2
_ (6.62x107? (3x8.48x1028}3

B X0 Ix 10 8x3.14

-18
1.13x10 &V

=1 43x10° "3 = -
1.6x10"

=7.06eV.

Example 21
Fermi energy of conduction electrons in silver is 5.48 eV. Calculate the number
of such electrons per m’.

Solution
3N |3
We h ;
e haveg, = 2m(8nV)
: 3
or e“;-,; =N = 3N
(zm)i STtV

N_8n o
Vzg-l;?(zm) 8?;

_ 8x3.14x(2x9. 1x10“3‘)2 x(5.48x1 6x10"9)2

3(6.62x1074)
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N 28 -3
N_50x10"m .
or v

Example 22 : "
A certain metal has Fermi energy 3.00 eV. Find the number of electrons per unj
volume with energy between 5.00 eV and 5. 10 eV for T =295 K.

Solution

N(e)de 8my2m’ g de
kel -
H : e T +1

E—E; _ 5-3 -
kT  8.625x107° x295

’

E-ip

e T =% _554,10* and de=5.10~5.00eV =0.10 eV

3 1
N(e)de _ 8x3.14x+/2 x(9.1x10)2(5%1.6x107%)2 x0.1x 1.6 10"
N (6.64x107*)* x5.54 x10*

=8.81x10""m>.
Fermi-Dirac statistics has several applications. Some of them are
(1) to find out the radius and limiting mass of white dwarf stars
(i) to find out the relation between mass and radius of neutron stars
(iif) to find out the heat capacities of dilute solutions and also that of metals.
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IMPORTANT FORMULAE
= ENW,
Probability of energy, p(e)= 1'\12 = where in runs over all macrostates
P N!
Multiplicity of macrostate, W = ——
N,
1=0
When N particles share Q integral units of energy, the total number of microstates
(multiplicity), W, = S+ Q=D
QN -1)!

When there are g states and N, number of classical particles, the number of microstates

possible W = g
When there are g, states and N, number of bosons, the number of microstates 18

W = (N, +g, 1!
N, (g, - D!

When there are g, states and N, number of fermions, the number of microstates

g!
W=—u028i"
N.!(g, =N))!

The number of particles (N_) in the system with energy ¢ and probability f(e,) is
N_=d f(e, ), where d  is the degeneracy. |
Total number of particles N, = > N, =" d f(e,) where n runs over all discrete energy

states.
The total number of states in the interval de
 dN =N(g)de = Vg(e)f (e)de

where g(g) is the density of states.

N =?N(e)de = [Ve(@)f(e)de
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9. Density of states in a gas of particles
4ﬂ\/§(28+ l)mmguz
= _________..————'—"

g(€) H3
10. Density of states in terms of momentum

2
y= 4n(2s +3])p dp _In3D

ge .
11. Density of states in a gas of photons
8ne”
BE) =175

12. Maxwell-Boltzmann distribution function
f(e)=A"e™
13. Maxwell-Boltzmann energy distribution law

IR kT

14, Maxwell-Boltzmann speed distribution law

2 (m 2
N(y)dv = NJ': [—EJ vie 2kTdy
b o

~15. Expressions for rms speed, most probable speed and average speed

: ’3kT

(I) Vm\s= L
m

(i) v, = =t
m

N(S)dﬁ =

S 8kT
(i) v=, [—
m
Vo =¥ 2V
: P

16. Bose-Einstein distribution function

1

fae (€)=

£

KT
Anee -1




17

18.

19

20.

Ay =1 for photons,
Fermi-Dirac distribution function

A

E=gg.

e’ 41
() fp(e)=1for e<g_at T=0K

=0 for e>¢, at T=0K

(ii) fm(a)=% for e=g  at T>0K.

Expression for Fermi energy of electron system

W[SNT”
EF = — —
2m i\ 8nV

Expression for average electron energy at absolute zero

i
%=t

Condition to be satisfied to treat particle as classical

A h N2
—<l1, A= d=|—
d 2mkr 2nd (v]

h N 113
— b g ]
o 2mkT (V)

In terms of temperature:

2 213
T> ——h (E)

2mk\ V

In terms of pressure:

P = (Zm)m (kT)SIZ

h3

Staristicar Puysics
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UNIVERSITY MODEL QUESTIONS

Section A
(Answer questions in two or three sentences)

Short answer type questions

1.
Z.

© N AL oa W

10.

11
12,
15

14,
15

16.

17.

18.
19.

21,

22,
23.

What is statistical mechanics?

Write down three phenomena which essentially require statistical mechanicg t

explain it.

What is meant by statistical analysis?

What is meant by macroscopic property of a system?

What is meant by microscopic property of a system?

Define the macrostate of a system.

Define the microstate of a system.

Four distinguishable particles are distributed in two states. Find the total number o
microstates.

Four indistinguishable particles obeying Pauli’s exclusion principle are distributed iy
5 quantum states. Find the total number of microstates possible.

A gas has 3 particles. How these particles can be arranged in 4 quantum states according
Bose-Einstein distribution?

What is the physical implication of increasing multiplicity?

Write down the statement of the implicit postulate in statistical analysis.

Wiite down an expression for probability of occurrence of particles with energy & and
explain the symbols.

Distinguish between classical and quantum particles.

Write down an expression for calculating the multiplicity of each microstate in the
miacrostate and explain the symbols.

N particles share Q integral units of energy. How will you calculate the multiplicity of
the system?

Show graphically how does the classical probability p(e) vary with energy g .

Write down the three probability distribution functions and explain the symbols.
Define density of states,

?iow will you calculate the number of particles N_in a system with energy ¢ 7 What
is the total number of particles if the system is discrete? n

Write down an expression for the
explain the symbols,

What does MB statistics deal with?
What does BE statistics deal with?

total number of energy states in the interval de and




25.
26.
27
28.
29.
30.
31
32
33.

35.
36.

37.

38.
39.
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What does FD statistics deal with?

Wr%te down Maxwell-Boltzmann energy distribution law and explain the symbols.
Write down Maxwell-Boltzmann speed distribution law and explain the symbols.

Write down the mathematical condition to be satisfied for treating particle as classical.
What are bosons? Give three examples.

What are the properties of bosons?

What are fermions? Give three examples.
What are the properties of fermions.
Distinguish between fermions and bosons.

Write down the Bose-Einstein distribution law and explain the symbols.
What is a photon gas?

Write down the Planck’s radiation law and explain the symbols.

Classify the following particles according to BE and FD statistics. Proton, neutron,
electron, photon, ¢, particle, hydrogen atom, hydrogen molecule, positron and lithium

ion SLi"
Write down Fermi-Dirac energy distribution law for free electrons in a metal and explain
the symbols,

Define Fermi energy.
For T >0K and &£ =¢,, show that probability is only 50%.
Write down three applications of FD statistics.

Section B
(Answer questions in a paragraph of about half a page to one page)

Paragraph / Problem type questions

1.
2
%

Briefly explain the statistical analysis of a composite system.

Distinguish between classical and quantum statistical mechanics.

Show that the most probable energy in the case of Maxwell-Boltzmann distribution is
L

2 kT -

Derive an expression for v__starting from Maxwell-Boltzmann speed distribution law.

Derive an expression for average speed starting from Maxwell-Boltzmann speed
distribution law.

Derive an expression for most probable speed starting from Maxwell-Boltzmann speed

distribution law.

Explain the experimental determination of molecular speeds.
Derive an expression for Fermi energy.
Derive an expression for average Fermi energy.
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10. Derive the condition for the limit

I1.

12.
13.

14.

16.

17.

i8.

19,

v & PHOTONICS

S00P
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s of classical statistics.

' ce-Einstein distribution law and dep..
Derive Planck’s radiation law by assuming Bose Einstein distribu and d‘*nsuy
of states.

Arrive at Stefan’s law usin

a) Considering the numbers O
5 coins are tossed

b) Whatis the total number of possib

J the number of microstates for each macrostate.

[)6 b)32 ©)1,5,10,10,5,

two particles, one with spin s = 1 and another with sp;,

g Bose-Einstein distribution law.
f heads and tails, how many macrostates are there Whey

le microstates in tossing 5 coins
¢) Fin

Consider a system consisting of
. a) Considering a microstate to be an assignment of the z-component of the spip,

I
=
N2

of each of the particles what is the total number of microstates of the two particle

system. b) How many macrostates are there for the total spin at the two particle system

¢) Find the number of states of each macrostate. [2)6 b)2 ¢)4,)
A system containing 10 electrons. Calculate the total number of microstates possible
[210}

A system consists of two particles each of which has a spin of % a) Assuming the

particles to be distinguishable, what are the macrostates of the total spin and what is
the multiplicity of each. b) What are the possible values of total spin and what is the
multiplicity of each value. ¢) Suppose the particles behave like indistinguishable
guantum particles. What is the multiplicity of the macrostates of the total spin?

[ 7516 -0) 7, 5.3, 1 €yl
In a conductor !ike._ copper, each atom provides one electron that is available to conduct
electric currents. If we assume that the electrons behave like a gas of particles at room
temperature with a most probable energy of 0.0252 eV. What is the density of states in

interval of 1% about the most probable energy. [=2.7x10”m”]

A system consists of N particles that can occupy two energy levels a non-degenerate
ground state and a 3 fold degenerate excited state which is at an energy of 0.25 eV
above the ground state, At a temperature of 960 K, Find the number of particles. in the
ground state and in the excited state.

[Nl =0.872 N}

N, =0.128 N

A container holds one mole of helium
mean energy of the molecules,
0.01 times mean energy centred

gas at a temperature of 293 K. Calculate the

How many molecules have energies in an interval of
on mean energy? }

0.0379
3.46x10”




20.

21.

22.

23.

24.

23,

26.

27

28,
29.

30.

31.

32.

StansticaL Prvsics 77

Che.:ck_ (\iv;leltber trhe Maxwell-Boltzmann statistics can be applied to the following
a) liquid helium at 4K b) conduction electrons in copper at room temperature. '

! [a) yes D) no]
What pressure must be applied to nitrogen gas at room temperature before Maxwell-
Boltzmann statistics begins to fail? (P 10%tm]
= m
To what temperature we must cool nitrogen gas at 1 atmospheric pressure before M.B.
statistics fail.

[=2.9K]
Calculate the number of photons per cm® in a volume filled with radiation at 3K.
o 2
. x° dx
Given Ie" e 2.404 [540 photons/cm®.
0

The human eye is most sensitive to that wavelength (A, ) at which energy

distribution of solar radiation shows the maximum. Calculate A, if surface

temperature is 5730K. [5.058 %10 m)

Show that the total number of photons per unit volume of an enclosure at temperature

3 w
T is 16(%) ;# starting from Planck's radiation law.

An object 1s at a temperature of 400°C. At what temperature would it radiate energy

twice as fast. [527.34°C]
A metal sphere 4cm in diameter whose emissivity is 0.25 is heated in a furnace to
500°C. At what rate does it radiate. [25.42W]
Find the surface area of a black body that radiates 1kW when temperature is 500°C. If
the black body is a sphere, what is its radius. [6.27cm]
The brightest part of the spectrum of the star sirius is located at a wavelength of about
290nm. What is the surface temperature of the star. [10°K]

The microprocessors used in computers produce heat at rates as high as 30W per cm?®
of surface area. At what temperature would a black body be if it had such a radiance.

[1517K]

The density of aluminium is 2.7 gem > and its atomic mass is 26.97g/mole. The.ef.fective
mass of an electron in aluminium is 0.09m . Calculate Fermi energy in aluminium.

' [11.8eV]

The Fermi energy in silveris 5.51eV. (a) What is the average energy of the free electrons

in silver at OK. b) What temperature is necessary for the average molecular energy in
an ideal gas to have this value. [3.31eV, 3.84 x 10°K]
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. . | 'n
33. Usine F.D. distribution function for electrons show that 1

ied.
T = 0 all states of &> £, are UNOCCUP! |
: Jectrons per cm’ is 24.2x 107 1n beryllium and 0.9 1,

a system of electrop S
ShY

| r of conduction € : . :
7 s ijn‘h;z;;be;f;;;m enerey of conduction electrons in Be 1s 14.44eV. Calculage the
T Section C

(Answer questions in about tWO pages)

Long answer type questions (Essays) -
1. Derive an expression for density of states of particles 1n 2 gas.
Derive Planck’s radiation law using B.E. statistical distribution law. Also deduce Weip:,

2,
| displacement law from it. B
3. What is F-D statistics? Derive an expression for Fermi-Dirac distribution law
electrons.
Hints to problems
1 to 12 See book work
N!
3. a) H T W=
o, !n,!

5 0 1

- 1 5

3 2 10

2 3 10

1 - 5

0 5 1

Total number of macrostates =6
Total number of microstates =25= 32
4. 2) Fors = 1, there are (25 + 1) microstates = 3
For-s=—;!£—, there are (2s + 1) microstates = 2
Toiajmimberofmicmstatts=3x2=6.
b) Two spi i ive ei
Spins can combine to give either 1-;-%:-3- or 1—%=—%—. So there are two
macrostates,

s “--3 -
¢) Fors=3 theraafe(2x%+1)=4 microstates and s =1, there are (2x1+1)=2
microstates
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Total 4 + 2 microstates.
15. Each electron has (2s + 1) states

The number of microstates possible is {25% 10 =200,

16. a) Each particle has 25+1 =2x3+1=4 states.

The total number of macrostates = 4 x4=16
For each particle the possible states are

[ (%)
-
2|

and —2

.

b

and

. »

=

and —3

(][

(= (9]

The total spin of the system s = 3
The possible states +3, 2, 1,0, -1, -2 and -3.

B Multiplicity
3 (3:3) 1
2 (3.4) (5.3) 2

7 Macrostates

1
Total 16

b) The possible values of total spinares=3,2,1,0
For s = 3, the multiplicity =25+1=2x3+1=7
For s =2, the multiplicity =2s+1=2x2+1=35
For s = 1, the multiplicity =2s+1=2x1+1=3
Fors =0, the multiplicity =2s+1=2x0+1=1
Total multiciplicity =7+5+3+1=16.

¢) When the particles are indistinguishable look at the table drawn for (2)

79




17.

18.

3 (33)

2 (33)

1 (G-H )

0o (3.-3)6.-32)

. %35

2 (3

5 (3
Using g(e)de = ———-——SR‘/’Z—EMEIQ de

I =
m=91x10"", £=0.0252¢V, ds:O.OZSQxE and h =6.64x10™

Multiplicity
1

(]

Toul_10

&
2 YT £5=£;)
New® . N ge® N 3
e N, 1

£, —€ =025eV

kT =8.625x107° x960 = 9.28 x107*

N = 0.25
_Ii.%. =3¢ 828407 373019 _ 147
1
N;+N,=N N,=N-N,
N-N

—L1=014
N 7

1

N, =0872N and

N, =0.128N
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3.3 ,
{9. Meanenergy, B, =—kT=-x8625x10"x293

=0.0379 eV

8 E
dN = N(g)dg_ = —_i‘—sv“'e_ k:I: dE
Jr(kTy? "

_2x6.02x10" x(0.0379)"* - 20
= - e 0.02527 : ) :

=3.46x10"
20. See example 13

A
1. M.B statistics fail when 4 is less than (say 0.1) but not very much less than 1

; V kT
Using PV=NkT T 5

N P
0.1(2m)** (kT)™*

Then calculate P, substituting, we get P = o

m,, =28u=28x1.67x10""kg

22. For the validity of M.B statistics

N 1£3
(-\7) « 1, Begins to fail

h
N2mkT

h N 213
| =)L
«JkaT(V]

U E—PF'dT
€ ¥ = 1T in

23. See example 1

24. A T=2898x107
25. See book work.




27.

28,

31.

32
33.
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Energy radiated, E o T*

B Y
. By [;) E, = 2E, given T, =400 + 273=673K.

Energy radiated per second per unit area =€ G A

. Energy radiated per second =4m’e G T
—4x3.14x(2x1072)? x0.25x5.67x107 x(773)*

Energy radiated per second =4nr’ o T*
1

; _
10° =4’ 6 T*  or et e =l e
4nx o T* 4ne o T

6=5.67x10"%, T=773K

A T =2.898%107 T=—2898 107 ~1x10
= 290%10° LAlECE

1 1
R=cT Tz(&yz(;@zyz_4
g 5.67x107"
Same as example 20

T= 3.31x1.6x107"

=%
2 & =52 b) 3.31eV =KT
1.38x1072

See book work

E. ol
F“(V)
2
3

(Ep), @ (09x107)3 ... (1)

W kS

. 2
(Eplg @ (24.2x10%)3 ... 2)
(Eglg, =14.44ev

anl
egn 2 £1ves the answer,
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Introduction

Matter e.:xists-in three states namely solids, liquids and gases. As the atoms or
molecules in solids are attached to one another with strong forces of attraction, the
solids have definite volume and shape. In this unit we shall deal with physical prop-
erties of solids, particularly crystals hence called solid state physics or crystal phys-

ics. T})‘e solids may be broadly classified as crystalline and non-crystalline (amor-
phous).

The crystalline state of a solid is characterised by regular or periodic arrangement
of atoms or molecules. The crystalline solids may be subdivided into single crystals
and polycrystalline solids. In single crystals, the periodicity of atoms extends through-
out the material. Diamond, quartz, mica, etc. are examples of single crystals. A poly
crystalline material is an aggregate of a number of small crystallites with random
orientations separated by well defined boundaries. The small crystallites are known
as grains and the boundaries as grain boundaries. Polycrystalline form of a material
is more stable than a single crystal. Metals and ceramics exhibit polycrystalline
structure.

Amorphous solids are characterised by the random arrangement of atoms or mol-
ecules. The periodicity, if at all present, extends up to a distance of a few atomic

Table 2.1 : Distinction between crystalline and amorphous solids

Crystalline Amorphous
1. The atoms or molecules are arranged | 1. They do not possess definite geometri-
in definite geometrical order giving cal pattern.

definite geometrical pattern.

2. The atoms are arranged in long range | 2. The atoms are arranged in short range
order. : order.

2

3. They have sharp melting point. They do not have sharp melting point.

4. They are anisotropic. Their physical | 4. They are isotropic. Their thermal con-

properties like electrical conductiv- ductivity, electrical conductivity, re-
ity, refractive index, thermal conduc- fractive index etc. are same in differ-
tivity etc. are different along differ- ent directions.

ent directions.
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diameters only. In other words; these solids exhibit short range order. Glass plag

tics, rubbers, cement, paraffin wax etc. are amorphous solids.
< with the study of geometrical forms and physical prq
P-

stallography. This forms the basis to the styg

© 84 SrarisTicAL Prysic

" The science which deal
erties of crystalline solids is called cry

of solid state physics. :

Lattice points and space lattice
_ The somic amagenens n 8 crysal s calld sl st Jn o pet
generally varies in different d.g- Tk HgRomS T.hl 3 peiodicity, n the arrangemeny
Ay KA RN I e irections. To describe a crystal structure we have t,
v i are1llce. For this 1m£.1gine a large number of points in space
the totality of sech points £ ;)cated. Such points in space are called lattice points and |
infinile mogtbor of et rms a space lattice (crystal lattice). The arrangement of
ing identical L 3 Saz llzr(:mts in three dlmensional space with each p'oint ha

s known as space lattice. ) 8
r—o—eo—0—>
Ong dimensional lattice

@

>

(b)
() -
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LI

Figure 2.2

We choose an arbitrary origin 0 and position vectors T, and T, of any two lattice

points by joining them to 0 as shown. If the difference T of the two vectors T, and T,
satisfies the relation.

—

T=na+n,b

where n, and n, are integers and a and b are fundamental translation vectors
characteristic of the array, then the array of points is a two dimensional lattice.

For three dimensional lattice

—-

T=na+n,b+n,C.

' The basis and crystal structure

The space lattice has been defined as an array of imaginary points which are s
arranged in space that each point has identical surroundings. The crystal structure 1s
always described in terms of atoms rather than points. Thus in order to obtfain' a
crystal structure, an atom or a group of atoms must be placed on each‘lattice point in
a regular fashion. Such an atom or a group of atoms is called the basis and acts as
building unit or a structural unit for the complete crystal structure. Tl?us a lattice com-
bined with a basis generates the crystal structure. Mathematically it is expressed as

Space lattice + basis = crystal structure



86  Stanisticau Physics, Souip State PHysics, SpecTRosCOPY & PHoTonics

Remember that lattice is a mathematical concept where as the crystal structure
- a physical concept. The generation of a crystal structure from a two dimensiona]
lattice and a basis is illustrated below. Suppose the basis consists of two atopy
represented by o and *. The crystal structure is obtained by placing the basis on eah
lattice point such that the centre of the basis coincides with the lattice point.

O O 0O o o

® ® ® ®

O O O O

| | O 0O 0 O O
+ o — , o o'o‘o

O O O O O

O O O O O

. . . . . L ] L ] ® L J

|
|
i

(Lattice) (Basis) (Crystal structure)

Figure 2.3 |
The number of atoms in a basis may vary from one to several thousands, wheré, as|
the number of space lattices possible is only fourteen. It shows that different types of
basis are available. If the basis consists of a single atom only a mono atomic crystal

is obtained. Coppér 1s an example of mono atomic face centred cubic structures.

Unit cells and lattice parameters |

A crystal structure is formed by. the addition of basis to every lattice point. In{
describing crystal structures, it is often convenient to subdivide the structure into
small repeat entities called unit cells. i.e., in every crystal some fundamental group-
ing of particles is repeated. Such fundamental grouping of particles is called a unit
cell. | |

A unit cell is chosen to represent the symmetry of the crystal structure, where in
all the atom positions in the crystal may be generated by translations of the unit cell
through distances along each of its edges. Thus, unit cell is the basic building block
of the crystal structure by virture of its geometry and atomic positions within the -
crystal. A unit cell or more than a single unit cell may be chosen to build upa crystd

structure. Unit cells also may be regarded as the building blocks that make up th® .
crystal. - |

Figure below shows a unit cell and the crystal formed with the help of such s
cells. : ‘ |
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From the figure below we can have

RN =~

U

Figure 2.4

1. Theline OA, OB and OC are obtained by the intersection of the -adj acent faces
of the unit cell. The directions parallel to these lines are called crystallographic
axes. |

2. The lengths of the sides OA =a, OB =b and OC = c are called lattice constants
or primitives. ‘ :

3. Theangles o, p and y between the crystallographic axes are called interfacial
angles. ‘

The above discussion shows that a unit cell can be completely described by the
three vectors 3, b and ¢ and angles between them (a, B, y) are specified. a, b and
¢ are called lattice vectors. The lattice vectors a, b and € and the interfacial angles
constitute the lattice parameters of the unit cell. By knowing the lattice parameters
we can easily determine the form and size of the unit cell.

It may also be noted that unit cells for most of the crystals are parallelepiped or
cubes having three sets of parallel faces.

The lattice vectors 3, b and ¢ may or may not be equal. Also the angles a., P
and ¥ may or may not be right angles. Based on these conditions, there are seven
different unit cells so also crystals. If atoms are existing at the corners of the unit
cells, the seven unit cells yield seven crystal structures, which gives seven types of
lattices. More space lattices can be constructed by placing atoms at the body centres
of unit cells or at the centres of faces. So we can have 14 different types of space
lattices. These 14 space lattices are called Bravais lattice. Bravais is the name of the

person who discovered this.
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* Unit cell versus primitive cell

The parallelepiped (or cube) defined by primitive axes 3a, b and C is called,

primitive cell. A primitive cell is a type of upit ce.ll having sn;alle;t volrhr::f?u lhe
' lattice points belonging to a primitive cell .he at it corqers. T erfh oret,h A gch\’e
number of lattice points in a primitive cell 1s one. A unit cell. on the % ter dan My
have the lattice points at the corners as well as at other locations .bot inside and o
the surface of the cell and therefore the effective number of lattice points in a ng

~ primitive cell is greater than one.

A unit cells may be primitive cells but primitive cells need not be unit cells,
Crystal systems

Crystals have internal structure. Depending on their internal structures they ex.
- hibit symmetries. Based on the symmetries exhibited by crystals they are classifie

into 32 classes. Among the 32 classes of crystal systems there are only seven basic
~ crystal structures. These seven basic crystal systems are distinguished from one an-

other by the angles between the three axes (q., B and y) and the lattice vecton

(4, b and €). They are 1. Cubic crystal 2. Tetragonal crystal 3. Orthorhombic crys
tal 4. Monoclinic crystal 5. Triclinic crystal 6. Trio

gonal crystal and 7. Hexogond
crystal. Lo
. 1. Cubic crystal system
In a cubic crystal the crystal axes are perpendicular to one another and the length
of the lattice vectors are the same.
ie.,

a:b:c and a=B=Y:90°

Cubic crystal may be simple cubic (sc), body centred cubj ‘
cubic (fcc). | | faien d cubic (bee) or face centrel

In the unit cell of simple cubic crystal s
ners only (each atom at each corner). Cu,

tructurc the atoms are |
Ag,

_ ocated at the cor
Fe etc. are exampleg of simple cubic

Simple cubic (sc)

Body centfed cubic
(bce) ‘Face cen d :
- t
Figure 2, 5 red cubic (fcc)
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In the unit cell of body centred cubic crystal structure there are atoms located at
the corners (each atom at each corner) and another atom at the body centre. Li, Na,
K and Cr exhibit this structure. In the unit cell of face centred cubic (fcc) crystal
structure, there are atoms located at the corners (each one at each corner) and each
atom at the centres of six faces. NaCl, is an example for fcc.

2. Tetragonal crystal systein

Here a=b#oc, (1=B=’y=90° _
i.e., The crystal axes are perpendicular and the length of two lattice vectors are the
same but the length of the third lattice is different. Tetragonal crystal may be simple

or body centred. —Sn is an example for simple tetragonal and T, O, isan example
for body centred tetragonal.

A A
P ST

Simple tetragonal (st). Body-centred tetragonal (bct)

Figure 2.6
3. Orthorhombic crystal system

azbzc, a=p=y=90° _
The crystal axes are perpendicular to one another but the length of the lattice
vectors are different all along the three axes.

Orthorhombic crystals may be simple, base centred (end centred), body centred
or face centred. :

Simple orthorhombic ~ Body-centred " End centred Face centred
orthorhombic orthorhombic orthorhombic

Figure 2.7
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4. Monoclinic crystal system
azbzc, a=p=90°#Y

Here two of the crystal axes
are perpendicular to each other
but third axis is obliquely in-
clined. The length of the lattice
vectors are different along all the
three axes. Monoclinic crystals
may be simple or base centred ¢, mple monoclinic
(end centred). CaSO,. 2H,0O (gyp- Figure 2.8
sum) is an example for simple
monoclinic.

Base-centred monoclinic

5. Triclinic crystal system

azbzc, azfzy=90°

None of the crystal axes are perpendicular to ‘.

any of the others and all the length of the lattice
vectors are different. There is only simple triclinic
crystal structure. K,Cr,0, is an example for this. A

6. Trigonal (rhombohedral) crystal system
Simple triclinic

a=b=c, a=B=y#90°
Figure 2.9

The length of the lattice vectors are equal and
are equally inclined to each other atan angle other

than 90°.
There is only simple trigonal crystal structure. As, Sb, Bi etc. exhibit this struc

ture.

Simple rhombohedral

Figure 2.10
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7. Hexagonal crystal system
g a=b#c, a'=B=90°,y=120°
Lengths of two lattice vectors are same but the length of c

third axis is different. Two of the crystal axes are g(° apart

while the third is perpendicular to both of them. There is only P

simple hexagonal crystal structure. Mg, Zn, Cd etc. exhibit Foedip
! a0 Simple hexagonal
this structure. - '

Figure 2.11

Thé, seven basic crystal structures and their properties are
given in the table below.

Table 2.2 : Seven basic crystal systems and their characteristics

IS\IIc-). Crystzzlgystem ‘ LatFic;: parameters B ravz(lils4l)atticc Examples
1 | Cubic a=b=c, a=B=y=90°| sc, bec, and fcc | Ag, Cu, Fe |
' ) . . Li, Na, K, Cr, NaCl
2 | Tetragonal a=b#c, a=F=y=90°| st, bet B—Sn, TiO,
3 | Orthorhombic [a#bz#c, a=B=y=90°| so, beo, eco, fco Kno,, BaSO,,
~|PbCoO,
4 | Monoclinic azb#c, 0.=B=90° #y| sm, ecm CaS0,-2H,0,
| - FeSO,, Na, SO,
5 | Triclinic azb#c, a#B#y#90 | st | K,Cr,0,, CuSO,;
- | 5H,0.
6 |Trigonal . |a=b=c, a=B=y=90° sr | As, Sb, Bi, Calcite
7 |Hexagonal a=b#c, a=p=90° sh Si0,, Zn, Mg, Cd.
|y=120° -
Crystal symmetry

All crystals have ordered arrangements of the faces and edges. i.e., we can say
that crystals possess symmetries. We know that Symmetry plays an important role in
dictaﬁng the dynamics and properties of a system. Here the Symmetry possessed by
Crystals acts as a powerful fool for the study of the internal structure of crystals.
‘From this we can extract the properties of solids which are constructed from the
basic crystal structures. |

’ The symmetries possessed by crystals are described in terms of stmetry opera-
tions. A symmetry operation is that which transforms the crystals to itself. j.e.,a
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crystal remains invariant under a symmetry operation. Thes'e operatlor}s are trang),
tion, rotation, reflection and inversion. The last three operations are po1nt operatio,
and their combinations give certain symmetry elements which collectively dete,
mine the symmetry of crystal around a point. The group of Slle.l symmetry Oper;
tions at a point is called a point group. There are totally 32 point groups in a 3)
lattice. The group of all the symmetry elements of a crystal structure is called ,
space group (point group symmetry operations combined with translational symmg,

try elements). There are totally 230 distinct space groups in 3D lattice exhibited by
crystals. |

The 32 point gfoups in 3D produce only 14 distinct Bravais lattices. These |4

Bravais lattices can be constructed from 7 distinct crystal systems which we already
explained. |

The 23 symmetry elements in a cubic crystal |

- Here we discuss about the point symmetries exhibited by a cubic crystal. W

could already see that there are three symmetries come under this. They are 1) inver
sion 2) reflection and 3) rotation. -

Inversion symmetry of a cubic crystal

Inversion is a point operation which is applicable to 3-dimensional lattices only.
This symmetry element implies that each point located at T relative to a lattice poin
has an identical point located at — T relative to the same lattice
point. In other words it means that the lattice possesses a cen-
tre of inversion or centre of symmetry. Consider a cubic crys- N
tal. It has three pairs of parallel and opposite faces all of them o
of the same size and shape. Here the body centre is a centre of SN
symmetry. This centre lies at equal distances from various sym- /
- metrical positions. Here for every lattice point given by the
position vector 7 there is a corresponding lattice point at the ~ Figure2.12

position _7. Hence we can say that cube possesses a centre of symmetry.
2. Reflection symmetry of a cubic crystal (plane of symmetry)

A lattice is said to possess reflection symmetry if there exists a plane (or a line i
two dimensions) in the lattice which divides it into two identical halves which &
mirror images of each other. In other words a crystal is said to possess reflecti®

symmetry about a plane if it is left unchanged in every way after being reflected b
the plane.

In a cubic crystal we can see there are three straight planes of symmetry Paf”]ld
to the faces of the cube and six diagonal planes of symmetry (see figure below)-
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7,
7
% =

Figure 2.13 : The three planes of symmetry parallel to the faces of the cube

m

VY,

= 0/

7

Figure 2.14: The six diagonal planes of symmetry in a cube

Note: Reflection occurs in a plane through the lattice point, while the inversion is
equivalent to a reflection through a point.
Rotation symmetry of a cubic crystal

A lattice is said to possess the rotation symmetry if its rotation by an angle @
about an axis (or a point in a two dimensional lattice) transforms the lattice to itself.

Since the lattice always remains invariant by a rotation of 27, the angle 27 must be
an integral multiple of 0.

LE., nd=2n

or 9:2_"
n
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The factor n takes integral values and is known as multipliqity of rotatio.n axis,
The value of 1 decides the fold of the axis. Only one, tWO, three, four and six folg
rotation axes of symmetry are possible in a crystal lattice.

If a cube 1s rotated about a normal to one of its

s RV 2 3
faces at its mid point through 90°, cube is in distin- | | /
guishable from the position it occupied originally. 7

el 360) ,
Thus the normal is an axis of 4 fold | 50" symme- g

Faa i / 1
try. Hence itis called a tetrad axis. A cube possesses / »
three such axes, one normal to each of the three pairs .
of parallel faces. (see figure below) / |
The three tetrad axis of a cube. If a cube is ro- 3 / |2

tated about a body diagonal through 120°, the cube Figure 2.15

will remain invariant. Then the body diagonal is a

(360 _ o
traid 120 3 | axes. A cube possesses four such axes.

One of the traid axes of the cube One of the diad axeé of th b
e cube

C. Figure 2.16
If - . . - . V
e Sa ;Ube 1; rotated about a line joining the mid points of a pair of opposite paralle!
s . e w e el .
ugh 180°, the cube is indistinquishable from the position it occupiel:l origi

nally. Thus the line is an axis of two (@ =2

_ . 180 ) fold symmetry. Hence it is calleda-
diad axis. A cube possesses six such axes |
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To sum up, the vatious Symmetry elements i In a cubic crystal are

‘ Inversion symmetry - 1

Reflection symmetry

Straight planes - 3

diagonal planes — 6

tetrad axes — 3

triad axes —4

diad axes -6
. Total symmetry elements of a cubic crystal is 23.

Rotation - inversion axis

A crystal is said to possess a rotation - inversion axis 1f it is brought back to its

original condition by rotation followed by an inversion about a lattice point through
which the rotation axis passes.

Let us consider an axis normal to the circle passing through
the centre, operating on a pole 1 to rotate it through 90°
anticlockwise to the position 4, followed by an inversion to the
position 2. From the position 2 the pole is rotated through 90°
anticlockwise and inverted to position 3. From position 3 it is
further rotated through 90° anticlockwise and inverted to posi-
tion 4. Further 90° rotation and an inversion the pole resumes Figure 2.17
position 1. Crystals can possess 1 —, 2 —, 3 —, 4 — and 6 — fold~

rotation inversion axes, represented by 1, 2, 3, 4 and 6.

Translational symmetry elements

There are two translation symmetry elements exhibited by crystals. They are screw
axis and glide planes.

Screw axis

When a rotation corresponding to 2 —, 3 —, 4 — or 6 — fold axis combines with a
translation parallel to the rotation axis will give rise to a new symmetry element
called the screw axis.

For example within a crystalline structure there are identical atoms a, a,, a,, a,
and ay as shown in figure below. t is the distance between @, and a,. This crystal-

line structure exhibits screw axis. The atom a, which is related to 2, by a rotation
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-

180° (z—ﬂ) fdllowed by L parallel to the rotation axis. This element of symmetry ;
2 2 .

<

referred to as 2 — fold screw axis and is demoted by 2, . The ordinary 2 — fold axis

also shown in figure.

"‘ ~
- — ®
[ ——
a
_______ —9 as l
o —®.a
a 5
6
a2 O ———
TR ae- _ ﬂa3
B, Gl et t
Tol | W .
ke e e . e e . e ) al az.; — a’ |
. ) |
Two fold screw axis Normal 2 - fold axis ‘
Figure 2.18

. |
Similarly a 3 - fold axis generates 3, and 3, screw axis. 3, corresponds to 120°

rotation about the axis followed by a translation %, 3, cofresponds 120° rotation

' ¢ S,
plus a translation equal to Et. Similarly 4 , 4., 4, are screw axes generated by the 4

— fold axis. The 6 — fold axis generates 6 , 6,, 6,, 6, and 6, screw axis. A
In general a screw axis is represented by the symbol n_. This is performed by &

. 2n : m .
rotation of — and translation of — times the translation vector parallel to the,
n n -

rotation axis.
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Glide planes ‘

The operation in a glide plane involves a translation i parallel to a reflection
- 2 ' ,

-plane followed by reflection across the plane. t denotes the distance between the

successive atoms a, and a,. Figure shows the glide plane and the ordinary glide
plane. . _

4 6 8 a a6

l ° i e o l l
2 a,
Normal mirror plane Glide plane with glide component t/2

Figure 2.19 A
Glide planes are divided into three types. They are (i) axial glides (ii) diagonal
glides and (iii) diamond glides. o
Axial glides are planes whose glide component is parallel to a crystallographic

axis a or b or ¢ and equal in length to % or ) or <. These are symbolised as a glide

or b glide or ¢ glide. Diagonal glides have the notation n and they correspond to

b .
planes with the vector sum of any two of the vectors %, rY % as the glide compo-

nent. Diamond glide occurs in the structure of diamond and is denoted by d. This
plane has the glide component equal to the vector sum of any two of the following

Ab
4’4 4
Space groups
When we combine rotation symmetries of the point groups with the translational
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symmetry, we obtain a space group gymmet_ry.. In this 1.nanner onelgexifrat?s !ar'ge
number of space groups, 72 to be exact. In addition to polr‘lt group§ pius trans atlon?]
groups some more combined operations such as screw axis and glide planes come i
to picture. Thus one obtains 230 different space groups.

The Bravais space lattices

The internal symmetry of a crystal depends on the arrangqnent. in_ the space lat.
tice. Bravais has established that there are only 14 ways in which similar pqmts can
be arranged in a regular three dimensional order. These 14 arrangements are knowy

as Bravais lattices. They are sc, bec, fec, st, bt, so, bco, eco, fco, sm, ecm, st, sranq |
sh already explained. - = 1

Metallic crystal structures

In most of the metals the atoms are arranged in some repeatable pattern indefi-
nitely in space. i.e., metals are crystalline. Most of the common metals exhibit simple |
crystal structure such as cubic, face centred cubic and hexagonal close packed. Here |
our aim is to see how atoms are packed in these crystal structures. For this we have |
to familiar with certain crystal structure terms such as coordination number of sec- |

ond nearest neighbours, nearest neighbour distance, atomic radius number of atoms
per unit cell and atomic packing factor.

Coordination number or number of nearest neighbours (N)

It is defined as the number of equidistant neighbour that an atom has in
structure. It is denoted by N.

Greater the coordination number, the more closely packed up will be the struc-
ture.

For SC structure, N=6 _
For BCC structure, N = 8 - ' |
For FCC structure, N = 2 il m |
Nearest neighbour distance | <> |
The distance between the centres of two nearest neighbouring at- Figure 2.20

oms is called nearest neighbour distance. If r is the radius of the atom,
the nearest neighbour distance is 2r. '

For SC structure, 2r = 3

the given

For BCC structure, 2r = %a : |
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For FCC structure, 2r — -2

| V2
Number of second nearest neighbours
It is the number of equidistant atoms nearest to first nearest number.

There are 12 second nearest neighbours at distance {/Ea for SC. There are 6 |

second nearest neighbours at distance a in BCC. There are 6 second nearest neighbours
at distance a in FCC structures.

Atomic radius (r)

It is defined as half the distance between nearest neighbours in a crystal without
impurity. | |

_a V3 __a
ForSC’ r_zs fOI‘BCC, r—_-Ta andfOI‘FCC, r_z\/i .

Number of atoms per unit cell
The number of effective lattice points (atoms) per unit cell is given by
o e 3
2778

where n, is the number of lattice points (atoms) completely inside the cell and n, and
n_represent the lattice points occupying face centre and corner positions of the cell

respectively.
For SC structure:

ncﬁ’ =ni +

n,=0,n,=0 and n, =8

1 1
nd,=1x0+§-x0+§><8=1
For BCC structure:
n,=1,n,=0and n =8
1 1 =1
nd,=1xl+5x0+-§x =

For FCC structure:

n,=0,n,=6 and n, =8
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S S
nef_f=1><0+_2_><6'+8><

Atomic packing fraction (APF)

The packing of atoms in a unit cell
sented by atomic packing fraction (APF).

It is defined as the ratio of volume occupled by the atoms in a unit cell to that q
the unit cell.

of the crystal structure of a material is fepre.

APF _ Volume of the atoms per unit cell

1.e., :
Volume of the unit cell

_ n x Volume of each atom -
~ Volume of the unit cell

APF=-"
vV

Packing factor of simple cﬁbic crystal structure \

The simple cubic crystal structure of unit cell consists of atoms located at the

corners only (each atom at each corner) and these atoms touch each other along the
cube edges. Thus in sc structures we have |

lattice constant, a = 2r

In sc each atom is surrounded by six equidistant nearest neighbours and hence
the coordination number is 6. i

Moreover each corner atom is shared by eight unit cells Hence the share of ead
corner atom to a unit cell is one-eighth of an atom.

The total number of atoms in effect in one unit cell = l~>< 8=1

In other words the effective number of lattice points in a simple cubic cell is oné
Thus sc is a primitive cell. :
Volume of all the atoms in a unit cell v =1x imfi

Volume of the unit cel], v = a’ =(2r)*

= The packing factor, p.p=Y _ 4
Vo 32r)°
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= P-F=%=0-52 or 52%.

Since only half the space of unit cell is filled with atoms, we can say that sc
structure is loosely packed structure.

Only one element polonium at a certain temperature exhibits this structure.

.,

o
------

Simple cubic structure

Figure 2.21

Packing factor of body centred cubic structure

In this structure of unit cell there are 8 atoms at the corners and another atom at
the body centre. The atoms at the corners do not touch each other but the corner
atom touches the body centre along the body diagonal. Hence the coordination num-

ber is 8.
akd

7l

Figure 2.22: Body centred cubic structure

. |
The number of atoms in the unit cell =8x - +1=2

. . ]
Volume of the atoms in the unit cell v= ?.x;nr

Volume of the unit cell, v =a’
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Packing factor, P-F ='V =

Frorh the figure; we have
| (AC)? =a*+a’ =2a’
N (EC)* =(AC)” +(AF)”
(FC)* =2a* +a’ =3a’
(4r)? =32

3

r=—a
4

Put this in eqn (1), we get

V3

3
(4 ] ¥
p.p=ST “

2 =X"T-0.68=68%.
3 a 8

Li, Na, K and Cr exhibit this structure.

Packing factor of face centred cubic structure

In this structure there are
eight atoms at eight corners
of the unit cell and six atoms
at the centres of six faces.
The atoms touch each other
along the face diagonal. Each
corner atom is shared by -8
surrounding unit cells_and
each of face centred atom is

shared by 2 surrounding unit
cells.

Figure 2.23; Face centred
The total number of atoms in the unit cell

1
=8><—+6><l=4

8 2

a—
(b)

cubic structure
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Volume of all atoms in the unit Eell, vV=4x iﬂ:r3

‘Volume of the unit cell, V= a3,
The packing factor, P-F ="
Vv

167
3xa’

From the figure we have

i.e., P.-F=

(4r)° =a’ +a® =2a’

a

or : Ir=——7e
242

Put this in eqn (1), we get

_ 16T xa’ &
3a°(2V2)° 32

Copper, aluminium, lead and silver exhibit this structure. This is a close packed
structure.

Note: The coordination number of each atom in fcc is

12. When the coordination number of an atom is

Jess than 12, we call it as a loose packed structure.

Packing factor of hexagonal close packed structures

(hep) |

The very name hexagonal indicates that hcp structure
has the shape of hexagon. The unit cell of this contains
one atom at each corner, one atom each at the centre of the
hexagonal faces and three more atoms within the body of
the cell. The atoms touch each other along the edge of the

‘hexagon. Thus a = 2r.
The top layer of the hexagon contains seven atoms. Each e

corner atom is shared by 6 surrounding hexagonal cells (=21)

and the centre atom is shared by 2 surrounding ce_lls..The gt .34 Bemgptial

three atoms within the body of the cell are fully contribut- -~ packe] structiré

ing to the cell.

P-F

=0.74

c

v

4
w

!
t
I

a

ittt s s 1w 2
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Thus the total number of atoms in the unit cell

! 1 -!- 1+—1-+3=6
=6X—+6?<—é-+1X2+ 2

| | 4
. Volume of atoms in the unit cell, v=6x §m3

Volume of the unit cell (hexagon), y ==>"a’c

33 ,
2

(where ¢ be the height of the unit cell and a be its edge).

’ 2n (a
. Packing factor, PF=— = na azc_—__(_)
V 33 3lc

2

3
% can be evaluated to be \/%

o 3 T
- P F-_3J§ 5 b 0.74 or 74%.
Magnesium, zinc and cadmium exhibit this structure.

Note : (i) In these structures the coordination number is 12. i.e., each atom is sur-
rounded by 12 similar and equal sized neighbours. Out of these 12
neighbours, six lie in one plane,
three in an adjacent parallel plane

above this plane and three in a AN /
w8 . N\,
similar plane below it. \V/(,) \
(ii) Volume of the hexagon = base 7N
area x height = base area x c > :1 N
N\,
Base area = 6 x Area of AAOB. =
Figure 2.25

=6X-;-AOde
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Cad
But —__':COSSO .. Ad:ABcos30=a£
AB | 2

R

1
Base area =6x—xaxa— =
2 2

.. Volume of the hexagbn 3‘/—

=—ac

To evaluate -
c

The three body atoms lie in a horizontal plane at —;— from the orthocentres of
alternate equilateral traingles.
From the figure

AZ? = AX? +ZX?

4 2 2
a’= '-2—>< median) + &
3 4

Orthocentre

Figure 2.26

Sodium chloride (NaCl) structure / /

The Bravais lattice of sodium chloride struc- < :/ )
ture is face centred cubic. The basis consists of - o T
one Na* jon and one Cl- separated by one half /’ I/ ocr
the body diagonal of the unit cube. A unit cell of :
NaCl comprises four molecules. In this structure Basis

e f the Figure2.27: Unit cell of sodium
ach ion is surrounded by six neighbours o chloxide stractire
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i p . -

112 1:742,.11
N X _0_’0__
Cl .000,220,2 ey
111 1 1. -1
*.ZZ22.00= 0=0,—00

Diamond structure .

: iamond cubic
Diamond exhibits both cubic and hexagonal type structures. The. S(’illz;r:tlice i
(dc) structure is more common and is described here. The Bravai e i
diamond cubic structure is fcc with basis consisting of twi) .carfbt(;ll’; ?3 (())dy Aiagona]
icé poir i f one quarter o
cated at the lattice point and other at a distance o __ is shown
ice poi i 1. The unit cell of dc structure is s

from the lattice point along the body diagona : ;

in figure below. The carbon atoms placed along the body diagonals, in fact, occupy

the alternate tetrahedral void positions in the fcc arrangements of carbon atoms. The

packing factor of the dc structure is only 34%. The coordination number of each

; a ;
carbon atom is 4 and the nearest neighbour distance is equal to /3 i where a is the
lattice parameter.

The dc structure may also be viewed as an interpenetration of two fcc sub lattices

| 11 1 -
with their origins at (0, 0, 0) and (Z,Z Z) A plane view of the positions of all the
carbon atoms in the unit cell js shown be

low. The fractiona] heights of the carbon

O: Catom Occupying fec position
:Catom Occupying tetrahedra] site
The unit cej

Plan view of at

omic positions in dc unit cel],
. of de structyre. The lattajce j Numbers ip the circlesg indicate fractional
fee with carbop atoms located at fee posi- heights of the carbon atoms,
tons and a¢ alternate tetrahedrg) sites,

Figure 2.28
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atoms relative to the base of the unit cell are given in the circles drawn at the atomic
positions. Two numbers in the same circle indicate two carbon atoms at the same
position located one above the other. Other materials exhibiting this type of struc-
ture are C, Si, Ge, Gats, Gray tin etc.

Note :

’ 2
From the figure (XY)? = (i) & [E)z _at
4 4 8

2 2 2
XZ? = (XY +(YZ): =2 + 2 _da
8 16 16
Figure 2.29
3a®
2r) =—
(%) 16
or 2r = \E a.
4
4
8x —mr’
.. Packing factor, N = m/3 =0.34 or 34%.
\Y a’ 16

Zinc sulphide or zinc blende structure

The zinc blende structure is similar to the dc structure except that the two fcc
Jattices in it are occupied by different atoms and displaced from each other by one
quarter of the body diagonal.

The cubic zinc sulphide structure re-
sults when zinc atoms are placed on one
fec lattice and 3 atoms on the other fcc
lattice as shown. The structure is cubic.
There are 4 molecules per unit cell. For
each atom, there are four equally distant
atoms of opposite kind arranged at regu-
lar tetrahedron. CuCl, Insb, CdS etc. ex-
hibit this structure.

The coordinates of Zn atoms are 000,

Figure 2.30: Zinc blende structure

0 and the coordinates

0 0

11
"22

B | —
N9 | ==

1
2'

S | —
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of the 3 atoms are

Caesium chloride (CSCI) structure
The Bravais of CsCl is structure is simple cu- -
- bic. The basis consists of one C; ion and one CI” K ;
ion. There is one molecule per primitive cell, with N
atoms at the corners 000 and body centred posi- ,.

. . 1 . . ’ K
tions at the corners E%% of the simple cubic space ‘—/ " j
lattice. Each ion is at the centre of a cube of ions of
the opposite kind, so that the coordination number  Figure 2.31: Caesium chloride

is 8 obviously, the lattice points of CsCl are two structure
- interpenetrating simple cubic lattices, the corner of

one sub lattice is the body centre of the other. One sub lattice is occupied by Cg ions

and the other by (- ions CsCl, NH,Cl, RbCl, T/Br are some materials crystallising
in this structure. CsCl structure is shown in figure 2.31.

Finally we give a table of cell properties dc, sc, bee, fec and hcp structures
‘Directions, planes and Miller indices |

In a crystal there are large number of atoms situated at the lattice points in differ-

ent directions and planes. For the study of crystal analysis we have to specify the
directions and planes of lattices.

Lattice dlrectlons

The direction of line in a lattice is defined by
assigning certain indices to this line. For this A
imagine that the line passes through the origin of
the crystallographic axes. Take the coordinate
axes of any point on the line. These coordinates QD
are simplified to get a set of the smallest possible

integer which when enclosed in a square bracket QT
represents the direction of the lattice. A

For example, to determine the lattice direc-
tion OQ in a cubic crystal. Take the point

ol
N
l“

v

=l
O

Figure 2.32
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ine, either of these points yields the directjq, "

11 1 .
RPl=—s = .1,1) on thisl
[19 1) 1] . . . d. t. .

y line parallel to [1, 1, 1] lattice direction is representeq by

Remember that an o
[1, 1, 1] since parallel shifting doesnot change its direc ] |
) g to a direction perpendicular to the

It may be noted that the index correspondin
| direction opposite to the direction of erystallo.

axis is zero.
hich are putting bars over indices. See the figyr

It may also be noted that any
graphic axis is taken as negative W

below for various examples.

AZ s
ip & OA =[1,1,0]
C OB =[0,1,0]
oC =[1,1,1]
VB .
>Y —
5 . OD = [0,0_,1]
AF B OF =[1,0,0]
X Figure2.33
GD = —~(0B)=-{0,1,0]=[0, T, 0]
GB =—(0D) ={0,0,11=[0, 0, ]
33), we have
In the figure (33) aY g .
0OA =1, 0, 0] ; W E
A CX— .

--___.
-

"CE=[1,0, 0]
(0,0,0)

FG =—(CE)=-{1,0,0]=(T, 0, 0] Figure 2.34
o | igure 2-

B(0,0,0 7
------ 6 -,’
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OG =[0, 1, T]

AB=[1,0, 1]
Planes and Miller indices

A_H crystals _afe Consi_dered_ to be made up of a set of parallel equidistant planes
passing through the lattice points. These planes are known as lattice planes. These
lattice planes can be chosen in different ways as shown in figure below.

Figure 2.35

The scheme to represent the orientation of planes in a lattice was first introduced -

by Miller, a British crystallographer. ‘
Miller evolved a method to designate a set of parallel planes in a crystal by three
numbers (hkl) known as Miller indices.

Miller indices may be defined as the reciprocals of the intercepts made by the

plane on the crystallographic axes when reduced to smallest numbers.
Following are the steps involved in the determination of Miller indices of a plane.

(i) Find the intercepts of the plane on the crystallographic axes.

(i) Take reciprocals of these intercepts.
(iii) Simplify to remove fractions, if any, and enclose the numbers obtained into
paranthesis ( ). | '

In step (i), the intercepts are taken in terms of the lengths of fundamental vectors
choosing one of the lattice points as the origin. If a plane is parallel to a certain axis,
its intercept with that axis is taken as infinity. In step (ii) the reciprocals are taken in
order to avoid the occurrence of infinity in the Miller indices |
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dices of crystal planes

|
L

es have the same Miller indices. Thus the My ‘:
by g

Important features of Miller in

(i) All the parallel equidistant plan

indices define a set of parallel planes. . |
(ii) A plane parallel to one of the coordinate axes has an intercept at infinity,

(iii) If the Miller indices of two planes have the same ratio. 1.e., (3, 1, 1) ap d 6 ) !
2), then the planes are parallel to each other. ) h

(iv) If (h, k, I) are the Miller indices of a plane, then the plane cuts the axes inty, .
and / equal segments respectively-

Important planes and directions in a cubic crystal

Consider a cubic crystal. Take the plar}e :
ABCD (shaded) of the cubic crystal shown in 1)
figure 2.36 shown below.

The plane cuts the x-axis at infinity, y-axis at
1, z-axis at .

The coordinates of the intercepts are
. ' :: Zolia!
. 00, 19 9 i O Z 7 C
Taking the reciprocal, we get D
_1_ 1 l _ Figure 2.36

Q0 o o)

or 0,1,0
Hence (0 1 0) are the Miller indices of the plane ABCD.

tz

n
P
L
r
N

Also see that the direction OC is given by [0 1 0].
‘i.e., the plane (0 1 0) is ) |

perpendicular to the di- - "'Z
‘rection [0 1 0]. )
The cube faces of a
t =l,d),w
cubic crystal are (10 0), %%// Intercepts l
1 !
(010),(001),(T 00)(0 / _ O
T 0)and (00T). %/ % ...... S v i =100
| ‘ Z iller =
. _ .

.
=¥,
‘ “"

Figure 2.37
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The direction (_)f? is[100]
i.e., The plane (1 0 0) is perpendicular to [1 0 0] direction.

3)
The intercepts are —Loqco

Reciprocals are 1,0,0
Miller iﬁdices are (T 00)

X Figure 2.38

Note : If a plane cuts an axis on the negative axis the corresponding index is nega-
tive. ’

%) |z

The intercepts are o,0—1
Reciprocals are 0 0 1
? §
X ¥ Miller indices are (00 1)
7
Figure 2.39
5) AZ
[ The intercepts are o, o, |
7 ;///y// . P
- Reciprocals are 0, 0, |
Miller indices are (00 1)
>
3) Y
v
s X

Figure 2,40
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Direction OD is [00 1]
i.e., The plane (0 0 1) is perpendicular to the direction [0 0 1].

6) 1\ Z

The intercepts are c, —1,

Reciprocals are 0, 1,0

Miller indices are (0 1 0)

< >Y
(@)

| A LMY .

X
Figure 2.41
The direction OD is [0 T O].

i.e., The plane (0 1 0) is perpendicular to the direction.

Note : Incubic crystals direction [h k] is perpendicular to the plane (hk 7). Butin
general it is not so.

Distribution of atoms in the atomic planes of a simple cubic crystal
Consider the (0, 1, 0) plane of a simple cubic crystal. See figure 2.35. |
Let a be the lattice constant in millimetre and r be the radius of the atom in

millimetre.
a2 mm? contains 1 atom.

. 1
1mm? contains —- atoms
a

But we know that a=2r (see ﬁgure 2.21)
1

Thus we can say that 1mm? contains % atoms. i.e., atoms per mm? = Z;; _
. , ;

" For the plane (110)
See the (110) plane shown below.
Here one side of the plane =a .

The otherside of the plane = v/2a
- - The area of the plane = 2 J2a =222
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i.e., v/2a?mm? contains one atom Z
A
. 1mm? contains atoms
J2a?
) . 1
Thus Imm?* contains atoms
42 r?
a
(- a=2r) Y
a2
. Atoms per mm? = =
4\/5 r X Figure 2.42 : (110) plane

For the plane (111) _
See the (111) plane shown in figure belpw. The base of the traingle — \/:Ea

Altitude of the traingle = %a
:
". Area of the plane =-2—b-h
l xf2—a- \/_ \/- 3a
a2
Z
A
2
\J
h
s B
E N 0 ¢
: = ?5—’ Y BC = V22
B
poo Y2 _ 2
2 2
X Figure 2.43 : 111 plane b = AB'—B
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- o3
This plane contains = N atoms

-

‘ 3 2 N
1.C., Ta‘ mm° contains — atoms

1
" Imm? contains —2— atoms a=2r
J3a?
2
1

We can say, 1mm? contains atoms
’ 431

i.e., Atoms per mm? = 1 >
431

Similarly we can calculate atom per mm? for all the planes.
Separation between lattice planes in a cubic crystal

Expression for interplanar distance

Consider O as the origin and OX, OY, OZ as three rectangular carterssan axes.

Miller indices (hk!). Beside reference through O,
if next plane passes through A, B and C. Then the

respective intercepts are %,E and il:- If ON is

the normal between this plane and the reference
plane, then ON = d is the interplanar spacing.

Let the normal make angles a, B, y with crys-

- Let areference plane pass through O, and consider a set of parallel planes defined by

Z

tal axes such that : A
ZNOX =0, £ZNOY =, and ZNOZ =y

From the figure we have

a b c -
d=—cosa=—cospB =—
gt ” B Icosy

i
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or | COSOL=EE‘-, cosB:gE, cosy=g£.
a b c

In a 3D space the direction cosines satisfy the relation.

cos® oL+ cos’ B+cos? y = 1

dh 2 . 2 q\2
[—) +(EJ + -d—l] =1
a b \ C

h? k¥ 1)
dz(—+—-+— =1
2 2
a® b* c?)
h: k2 P -4
or d=(a—2+-bT+c—2]
Fora simple cubic lattice a=b=c
a
.. The interplanar distance, d =
P (h? +k? + )%
This is denoted by d,,,
Th Ao == a
= 7 (12 +0° +0%)”
p 2 _a
T +0r V2
y 2 _2
ME 2+ VB
. l . 1
Thus dloo:duo:dmzl'__z"_:i'

Similarly for fcc lattice




118 Swansmica Prvsics, Sotio STATE PHysics, SPECTROSCOPY & PHOTONICS

a L e
dw="T and d;, =

7 23

FOI‘ bCC lﬂtlice dno =

a
5‘ |
Example 1

Calculate the interplanar spacing for a (321) planeinas
lattice constant is 4.2 x10™°m. '

imple cubic lattice Whog,

Solution
a=b=c=42x10""m
IR -

SN PRI

For the plane (321), h=3,k=2 and /=1

d _ a - a -
W02 1) (14

42x107"°

Jia

d,, = =1.12x10"m

Example 2

In a tetragonal lattice a=b=0.25nm and ¢ =0.18nm. Deduce the lattice spac-
ing between (111) planes |

Solution

Here h=1, k=1, and =1 |
‘a=b=0.25nm and ¢ =0.18nm

d =[ 1 -1 N
" 025 (0.25)2+E(TS)2] o

d,,, =0.126nm
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“X-Ray diffraction
Introduction

X-rays are electrqmagnetic waves and they should exhibit the phenomenon of
diffraction. However unlike visible, X-rays cannot be diffracted by devices stch as
ruled diffraction gratings because of their shorter wavelengths (0.1 nm order). In
1921 German physicist Max Von Laue suggested that a crystal which consisted of a
3D array-of regularly spaced atoms could serve the purpose of grating: This is pos-
sible because all the atoms in a single crystal are regularly arranged with interatomic
spacing of the order of a few angstroms and this is compatible with the conditions
 required to be satisfied for diffraction to take place. |

On the suggestion of Laue, his associates, Friedrich and Knipping later success-
fully demonstrated the diffraction of X-rays from a thin crystal of zinc blende (ZnS).
The diffraction pattern obtained on a photographic film consisted of a central spot
and a series of dark spots arranged in a definite pattern around the central spot. Such
a pattern is called the Laue’s pattern and reflects the symmetry of the crystal. After
that the phenomenon of X-ray diffraction has become an invaluable tool to deter-
mine the structure of crystals. It is also used to determine the wavelengths of X-rays.

Braggs’ law

In 1912 W.H. Bragg and W.L. Bragg put forward a model which generates the
conditions for diffraction in a simple way. According to their model a crystal is an
aggregate of large number of parallel atomic planes. If X-rays are considered to be
reflected by such a set of parallel planes followed by the ¢onstructive interference of
the resulting reflected rays, the diffraction pattern is obtained. Thus the problem of
diffraction of X-rays by the atoms converted into the problem of reﬂeqtion of X-rays
by the parallel atomic planes. Based on these considerations, Braggs derived a simple
mathematical relationship which is the condition for the reflection to occur. This

condition is known as the Braggs’ law.

Derivation of Braggs’ law

Consider a set of parallel atomic planes with interplanar spacing d. Let a parallel |
beam of X-rays of wavelength A be incident on these parallel planes at a glancing
angle § such that the rays lie in the plane of the paper. Consider two such rays 1 and

2 which strike the first two planes and get partially reflected at the same angle 0.
The diffraction is the consequence of constructive interference of these reflected

rays. Let PL and PM be the perpendiculars drawn from the point P on the incident
and reflected portions of ray 2. '
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Figure ‘2.45: Bragg’s reflection of x-rays from the atomic planes

The path difference between the rays 1 and 2

= LQ+ QM
From the figure we have
—;‘—8- =sin0
or LQ =PQsin6=dsin0
andalso QM = dsin®.

- The path difference = 2dsin0 .

For constructive ihtcrference of rays, the path difference must be an integral mu
tiple of wavelength A.

i.e., 2dsin0=nA, where nis an integer.

. This equation is called Braggs law. For n =0, we get the zeroth order reflectio?
which occurs for §=0 i.e., in the direction of incident ray and hence Cam“’tbe

~observed experimentally. The diffractions corresponding to n = 1,'2, 3.n €G- "

called first, second, third ..... etc. order diffractions

The highest possible order is determined by the condition that sin 6 <1 and 4

for Bragg reflection to occur. Taking g ~ 1010 10 of 1A°'X"

m, we get A<10 -

rays having wavelengths in thi - 9
e mres.g gths in this range ar €, therefore, preferred for analysi$ of Cr,y |
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Braggs X-ray spectrometer

It is an apparatus devised by Bragg to verify his equation 2dsin 8 = n\ and herice

to study the crystal structure. It consists of an X-ray tube (coolidge), two slits S and
S,, a turn table and an ionisation chamber. X-rays from the X-ray tube is allowed to
pass through slits S, and S, so as to obtain a narrow beam which is then allowed to
fall on a single crystal (D) mounted on the turn table. The crystal is rotated by means

of the turn table to change the glancing angle (6) at which X-rays are incident at the

exposed. fac_e of the crystal. The X-rays reflected from the crystal is allowed to enter
into an ionisation chamber which is used for measuring the intensities of the re-

flected rays. Measure the glancing angles @ , 0, and 6, corresponding to maximum

intensities for n =1, 2 and 3- respectively. From Bragg’s equation
2dsin 6, =2 forn'=1
2dsin 0, =2\ forn=2
2 d sin 6, 537» forn=3

'Knowing the glancing angles and ), we can determine the interplanar spacmgs
" This is repeated for different planes.

-
%SS
4

g“‘ S
Bragg's X-ray spectrometer 3

Figure 2.46

The structure of NaCl crystal was studied by using Bragg’s spectrométer. The
ionisation current was determined for different glancing angles. A graph was plotted
between glancing angle and the ionisation current.
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, i ima occured :
It was found from the graph that the first order reflection maxima occured at 59

8.4°and 5.2°for (1 00), (110) and (1 1 1) planes respectively.

From Bragg’s equation we have

2dsin® = nA
2d sin© - Jforn=1
. , ; 1
Sk, ¢ % ne
.1
~-9.73
do & 159
d (o4 1 =6.85
vo sin 8.4
d o —L1 _=11.04
it sin5.2
or dio 1dyyg 1 dyy, = 9.73:6.85:11.04
= 1:074:1.14
ie., dyy 1dyyp o d =

111 l: L —2—

This is nothing but the ratio of interplahar distances in féc structure. From this
- Bragg concluded that sodium chloride crystal has a face centred cubic structure.
Rotating crystal method |

.~ A single crystal is held in the path of monochromatic radiations and is rotate i

about an axis. i.e., }, is fixed while g varies. Different sets of paralle] atomic plan®

are exposed to incident radiations for different values of § and reflection takes pli®
from those atomic planes for which d and

e sati ’ . diS ;
known as the rotating crystal method. sty the Bragg’s law. This metho_ ;
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Collimator

.~ Photographic film

——— —> Undeviated X-rays

Single crystal

R, Rotator

Fig_ure 247

The diffraction takes place from those planes which satisfy the Bragg’s law for a
particular angle of rotation. When the crystal is rotated slowly successive planes
pass through orientation, each producing a spot on the film. The position on the film
when developed indicates the orientation of the crystal at which spot was formed.
The data obtained from these spots give information about the structure of ordinary
and complex molecules. ‘ '

Powder crystal method
The sample in the powdered form is placed in the path of monochromatic X-rays.

i.e., \ is fixed while 6 andd vary. Thusa number of small crystallites with different
orientations arer exposed to X-rays. The reflections take place for those values of d,

0 and A which satisfy the Bragg’s law. This method is called the power method.
The experimental arrangement consists of a monochromatic X-ray collimated by
two slits S, and S, falls on the powdered specimen taken in a thin glass tube. The
specimen S is suspended vertically on the axis of a cylindrical camera. The photo

graphic film is mounted round the inner surface of the camera as shown in figure.

The powder specimen of the crystal can be imagined to be a collection of random

oriented tiny crystals exposing a!l
values of glancing angles to the incl-
dent beam. For a given A and a given

d, there can be only one value of 8
which satisfies Bragg’s law. Such
reflected beams emerge out from the
specimen in all directions inclined at |
an angle 2 9 with the direction of the Powdered crystal method

incident beam. The reflected rays will Figure 2.48
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‘ oto i
be on the surface of a cone, vertex at the specimen. base ?n the photographic fjj,,
d . . : f re.
and having semi vertical angle 20. It will be as shown In 1gu

Figure 2.49

Let L be the radius of the cylindrical camera. The direct beam strikes the film y

0. Suppose a spectrum with glancing angle © s found at A which is at a distance of
R from O.

Then 0 =_R_ (Angle = AI'C )
2L Radius

Using this value of @ in Bragg’s equation and knowing the value of )., d the inter
planar distance can be calculated. This method is employed in the study of micro
crystalline substances like metals, alloys, carbon, fluroscent powders and other forms
where single crystals are not available.

R
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; , n, n
Number of atoms per unit cell, n; =n, + 7‘ +—=

n, — number of lattice points

n, — number of lattice points occupying face centre

n, — number of lattice points occupying corners.
Atoms packing fraction:

_ Volume of atoms per unit cell

APF :
Volume of the unit cell
V.
APF=n_, x olume of each z.ltom
Volume of the unit cell
3. Interplanar distance:
h2 k2 l2 b
d= (-aT + F + C_ZJ
4. Bragg’s law:
2dsin®=nA n=1,2,3.....
5. Properties of crystal structures
SL. [ Crystal system [ | ..ioe parameters Bravalls4lamce Examples
No. ) (14)
1 |Cubic a=b=c, a=B=7=90°| sc, bec, and fcc | Ag, Cu, Fe
e | _ | | Li, Na, K, Cr, NaCl
2 |Tetragonal . .[a=b#c, a=B=y=90° st bet B—Sn, TiO, -
3 | Orthorhombic |a=b=#c, a=p=7="90"° so, bco, eco, fco | Kno,, BaSO,,
' ' PbCO,
4 | Monoclinic azb#c, a=p a 90° # y| sm, ecm CaSO,-2H,0,
| FeSO,, Na, SO,
5 | Triclinic azbzc, a#p#y=#90 st K,Cr,0,, CuSO,;
5H,0.
6 | Trigonal a=b=c, a=p=y#90° sr As, Sb, Bi, Calcite
|7 |Hexagonal a=bz#c, a=p=90° |sh Si0,, Zn, Mg, Cd.
|y =120°
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UNIVERSITY MODEL QUEST]ONS

Section A

Short answer type questions

10.
11.

12

13

14,
15.
16.

What do you mean by solid?

What are crystalline and amorphous
Distinguish between crystalline and amorphous solids.

(i) a crystal (ii) lattice points and (iii) crystal lattice.

solids? Give examples.

Define
e and a basis?

How w
What is a unit cell?
Define (i) crystallographic axis (i1) lattice parameters.

ould you generate acrystal structure from a space lattic

Distinguish between a primitive cell and a unit cell.
What is erystallography?
How does a crystal differ from a lattice?
Name the seven basic crystal systems.
What is a cubic crystal system? What are its Bravais lattices?
Draw the unit cells corresponding to sc, bee and fec.
Define a tetragonal crystal system Draw the unit cells of st and bet.
Define (i) point group Symmeliry and (ii) space group symmetry.
What is (i) inversion symmetry
(ii) reflection symmetry
(iii) rotation symmetry.
When a crystal is said to possess a rotation-inversion axis?

. Name two translational symmetry elements.

What is screw axis symmelry?

What is glide plane symmetry?

What is meant by coordination number what is its significance?
What is atomic packing factor? What does it indicate?
Differentiate between loose packed and close packed structures.

How do we assign direction to a line in a lattice?

. What are lattice planes?

What are Miller indices? What 1s their importance?
How does hep structure differ from bee structure?

. Explain without calculation, why fce and hep structures have the same packing factor

Draw the direction [1 1 1] in a cubic crystal.
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36.

31.
38.

39.

L.
2.
3,
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Draw {’1 | 1) plane in a cubic crystal,
Draw the following planes of a upi cubic erysal :
)(100) GO 10) (i) 001 :

piaw the [onuwing_planex of a unit cubic erystal

i) (100 (i) (0 1 0) i w0 1)

what is the difference between the two planes (1 0 0) and (2

Draw the (2 0 0) plane of a unit cubic crysial. ‘ ra

Wwhat type of lattice a;ad basis do the following structures have

(§) sodium chloride (ii) diamond cubic |

g;:; l(.]own the various positions of Na* and CI- ip the unit cell of sodinm ¢
Write down the coordinates of Zn and S atoms in the unit cell of Zn$
Diamond.is tﬁe hardest Sub:‘,lance known inspite of the fact that the pa;i:k'm factor and
the coordination number of carbon atom in the de structure are quite low. éxpia(::\ .
Write down the various positions of C + s and El- in the unit cell of caesium chk).ride
crystal.

Draw the unit cell of caesium chloride crystal.

hloride

_ What are the important features of Miller indices of a crystal.
. Draw the following planes of a unit cubic crystal.

(i) (110) (i) (111)

_ Write down an expression for the interplanar distance and explain the symbols used.
. What 1s diffraction?

45.
46.
47,
48.
49,
50,

Write down Bragg’s equation and explain their symbols.
Draw the diagram of Bragg’s X-tay spectrometer.
What are the uses of X-ray diffraction method?
Explain why X-ray diffraction method is suitable for the analysis of erystal structures.
Why zeroth order diffraction is not considered in X-ray diffraction?
Why cannot ordinary optical grating diffract X-rays?
Section B

(Answer questions in about half a page to one page)
Paragraph / problem

Derive the packing factor of simple cubic crystal structure.
Derive the packing factor of body centred cubi¢ SUCTUTE.

Derive the packing factor of face centred cubic s

fructure.
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4.

CIR IES

15,

16.

17.

18.
19.

=
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{ - fraction for hep Structure.
Obtain an expression for the packing fraction for hep stric
3

Show that the S ratio for an ideal hép lattice is \jﬂ
f one diagonal planes of a unil cabic ¢rystal (1 1 .0)
nit cell of diamond.

y 34%.

Find the Miller indices o
Calculate the number of carbon atoms per i
Show that the packing factor of dc structure is onl
Derive an expression for the interplanar distance.
Explain the rotating crystal method.
Explain the powder crystal method,

Derive Bragg's law
A plane makes intercepts of 1, 2 and 0.5A" on the crystallographic axis of an orthor

hombic erystal with a:b:c=3: 2:1. Determine the Miller indices of this plane. (312

Obtain the Miller indices of a plane which intercepis a, =, 3¢ in a simple cubic unj

-

cell. (361)

The Miller indices of a plane in a simple cubic crystal are 12 3. Fine the coordinates of
the plane

(- b C \

"23)

*23,

Find the Miller indices for planes with intercepts.

-

(i) &, 2b, 0 (ii) a. b, —c (i) 7> b,

L

210,11 1,210)

Caleulate the distance between two atoms of a basis of the diamond structure. If the
lattice constant of the structure is 5 A°. (2.17A%)
The Miller indices of a plane is (3 2 6), sketch the plane.

A plane makes intercepts of I, 2 and 3A° on the crystallographic axes of an orthorhom-
bie erystal with a: b: ¢ =3: 2: 1. Determine the Miller indices of this plane (9, 3, 1)
The spacing between successive (100) planes in NaCl is 2.82A. X-rays incident on the
surface of the crystal is found to give rise to first order Bragg reflection at glancing
angle 8.8°. Calculate the wavelength of X-rays. (0.863 A)

. Calculate Ll:ie glancing angle on the plane (110) of a cubic rock salt crystal (a = 2814)
corresponding to second order diffraction maxima of wavelength 0.71A.

. The Bragg angle for the first order reflection from (111) plane in a crystal is 60° calcu-

late the interatomic spacing if X-rays of wavelength 1.8 x 10~'%m are used
(1.8 x10"'m)

(20,9349)
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If X-rays of wavelength 0.5 are diffracieg af an
I A = "*li:ngu_ ol
he spacing between the adjacent plane Ble of §¢ i

. o I_‘ & [ : .
s ofthe erystal. At tohiay N€ first order, What ls

angle will second maxi-

(287A, 10.037
J gle} diffraction peak 2 a Brapp
Used s 2.1A. Find the volume of the pnmi

mum occur.

metal with bee structure shows the firgy | smalfest
. a e wvallity an
angleof 0= 30° . The wavelength of X.ray ,

t cell of the metal.

uve uni 7 : pind
The angle of reflection .01 neutron bear from 4 erystal S ‘ (31A%
3(r. Find the speed of the neutron, - Erpianar spacing 3.84 A is

' ' . (103 X [(Pms”
In @ tetragonal lattice 2a=b=025nm, ¢ =0 18 » Fms')

e oy 1 ¥
m, Geduce the spacing between (111

planes {d =0.126 nm)

Section €

(Answer guestions in about one or %0 pages)

Long answer guestions - Essays

Deduce Bragg's law in X-ray diffraction. Deseribe Bra

E - g22's specrometer and explain
how it is used to determine the wavelength of X rays.
i Denie Bragg’s law of X-ray diffraction crystals. Give an account of powder method of
crystal structure analysis.
3. Derive Bragg’s law for X-ray diffraction in erystals, How it is verified. Describe and
explain rotating crystal method of erystal structure analysis.
Hints to problems
|. to 12 See book work
1
o g =
13. Intercepts are 1 2 -
o g . : 121
Intercept in terms of unit cell dimension  =— S
abl
121
BT
1.1
=
3 2
] =312
Reciprocals 3l
=3
14. Intercepts are -
12
Reciprocals 3
36l

Miller indices




—
]
—— 7
T 1

130 StamsticaL Prvsics; Soup STATE Pivsics, SeecTroscopy & PHOTONICS

15. Miller indices 123
Reciprocals 2

b c

. Intercepts A 33

16. Try yourself

% ¢ o
= d,azSA

17. Distance between two atoms in 4 diamond =

~ |

i8. The coordinates of the Miller indices (3 2 6), are 2a, 3b, ¢. Thus the plane is

Q |

§\\\\\\\\\‘\\

A

19. Same as problem No. |
20. 2dsinB=n)
d=282A, g =828 sin®=0.153 and n=1 calculate A.

a

Vh? +k* + 12

21. Spacing for (110) plane, d = h=Lk=LIl=0 .. d=1987A

: i - A 0-71X10"U
Use 2dsinB=mn), n=2, sin@="2= 22X~ _
d 1.987x107" 0.3573

6 =20.934"

|55
[

2. 2dsin=ni, 0=60° 3 =1.8%x10"m, n=1
d=1039%10""m gives d,,, =1.039%10" m.

a=dy;, xv3=1.039% 107 x1,732 = .8 x [0
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Introduction

Spectroscopy is the study of interaction between matter and electromagnetic waves.
Historically spectroscopy originated through the study of visible light dispersed ac-
cording to its wavelength. e.g., by a prism. Later this concept was extended greatly
to comprise any interaction with electromagnetic waves as a function of wavelength.
Spectroscopic data is often represented by a spectrum. Spectrum is a plot of the
response of interest as a function of wavelength.

Daily observations of colour can be related to spectroscopy. Neon light is a direct
application of atomic spectroscopy. Neon and other noble gases have a characteris-
tic emission colours. A commonly encountered molecular spectrum is that of NO,.
NO, has a characteristic red absorption colours.

Atoms and molecules have unique spectra. These spectra can be interpreted to
derive information about the atoms and molecules and they can also be used to

detect, identify and quantify chemicals.

The quantisation of energy

According to classical physics, radiation which behaves like an oscillator (radia-
tion originates from an oscillating charge), should have continuous energy distribu-
tion. In 1900 Max Planck made a daring assumption that the oscillators of radiation
should not have a continuous distribution of possible energies, but it must have

specific energies.

~ According to Planck an oscillator emits radiation of energy hv when it jumps
from one energy state to the next lower state. When it jumps from lower state to the
next higher state it absorbs radiation of energy hv. In other words emission and
absorption take place not in continuous manner as predicted by classical physics but
in discrete manner, each discrete bundle carries an energy hv, where h is called

Planck’s constant whose value is

h = 6.626x10™Js ~
Each discrete bundle of energy is called as a quantum of energy. This idea of
Planck later extended to cover many other forms of the energy of matter.

Here we deal with energy of molecules. A molecule may possess rotational en-
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ergy, vibrational energy and electronic energy. Rotational energy is due to the rota-
tion of molecules about its centre of gravity. Vibrational energy is due to the peri- .
odic displacement of molecule’s atoms from their equilibrium positions. Since the
electrons associated with atoms are in unceasing motion, we can say that molecules
also possess electronic energy. The electrons occupy one of its discrete levels. These
energy levels are quantised. i.e., when electrons jump from one level to another,
they release or absorb finite amount of energy. This idea can be extended to mol-
ecules. A molecule can exist in a variety of rotational, vibrational energy levels.
When it moves from one level to another energy involved is quantised like elec-

tronic energy. Let E, and E, be two rotational energy E,
levels of a molecule. The molecule can go from level E, I AE=E, - E,

to E, by absorbing energy E, —E, . According to Planck, E,
this energy difference has the form

E,-E, =hv
where h is the Planck’s constant and v is the frequency of radiation absorbed. Simi-

larly when the molecule jumps from level E, to E,, the excess energy is released in
the form of electromagnetic radiation with energy hv
i.e E,-E =hv

This extension of idea of Planck to molecules was confirmed experimentally.

Figure 3.1

Suppose a molecule is in level E,-and is irradiated with a single frequency v,
then the energy E, —E, = hv will be absorbed from the incident beam and the mol-

ecule will jump to energy level E, . The radiation after interaction with the molecule

is allowed to fall on a detector, will show that its intensity has decreased. If we use
a beam containing several frequencies for irradiation, then the detector will show

that energy has been absorbed only from that frequency v = 5 ;E' and all pther

frequencies. undiminished in intensity. The spectrum so obtained is called an ab-
Sorption spectrum.

If the molécule is in the energy level E, may jump to level E, by emitting radia-
tion of energy E, —E, = hv. The detector would show that the radiation emitted has

a frequency of v= E, l: E, . The spectrum so obtained is called an emission spectrum.
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The energy differences between the rotational, vibrational and electronic energy
levels are very small since h =6.626x107*Js. The energy differences are mea-
sured in joules per molecule. To have an appreciable energy change we take a gram

molecule of a substance. It contains 6.02x10* molecules. To get the total energy
change hy has to be multiplied by 6.02x10%.

Joule is not the only unit used to represent the transitions between energy states.
Various other characteristics such as v, A of the absorbed or emitted radiation dur-
ing transitions between energy states can also be used as units. Frequency v is
expressed in hertz, wavelength A in metre and wave number in m™.

- Regions of the spectrum

Spectroscopy is a sufficiently a broad field that many sub disciplines exist each
with numerous implementations of specific spectroscopic techniques. Types of spec-

troscopy are distinguished by the type of radiative energy involved in the interac-
tion. This type includes

1. Electromagnetic radiation. It was the first source of energy used for spectro-
" scopic studies. Techniques that employ electromagnetic radiation are typically
classified by the wavelength (frequency) region of the spectrum and include -

ray, X-ray, u-v ray. Infrared, microwave, nuclear magnetic resonance (nmr) and
electron spin resonance (e.s.r) spectroscopy.

o

Particles due to their de-broglic wavelength can also be a source of radiative
energy. Both electrons and neutrons are commonly used.

3. Acoustic spectroscopy involves radiated pressure waves as the source of en-
ergy.

4. Mechanical methods can be employed to impart radiating energy similar to acous-
tic waves to solid materials.

Among the four types discussed above we are interested only in the first type.

Electromagnetic spectrum and the corresponding spectroscopy

The orderly distribution of electromagnetic radiations according to their wave-
length or frequency is called electromagnetic spectrum. The range of the electro-
magnetic spectrum varies from 3 x 10’Hz to 3 x 10®°Hz (10m to 1 picometre). The
whole electromagnetic spectrum has been classified into different regions in order
of increasing frequency (decreasing wavelength) according to their type of excita-
tion. The boundaries between the regions are not sharp. i.e., There is overlapping in
certain regions of the spectrum. Each region of the spectrum is associated with dif-
ferent molecular processes. Accordingly we have six regions of spectrum,
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1. Radio frequency region

This region extends from 3 x 10’Hz to 3 x 10" Hz (10m to 1cm wavelength).

This frequency region is important to a spectroscopist in the sense that the phe-
nomenon of nuclear magnetic resonance (n.m.r) and electron spin resonance (e.s.r)
occur at this frequency region. The nuclear magnetic resonance occur at the lower
part of the radio frequency region (=~ 100MHz) and electron spin resonance occur at
the upper part of the radio frequency region (x10"Hz). Since this frequency is
considerably at the end of radio frequency region we can also say that e.s.r. occurs at
the long wavelength edge of the microwave region.

Nuclear magnetic resonance (n.m.r)

If we consider a nucleus as a point charge spinning about its own axis, it consti-
tutes a circular current which in turn produces a magnetic dipole. In other words the
spinning particle behaves as a tiny bar magnet placed along the spin axis. When
such nucleus is subjected to an external magnetic field, it is due to interaction be-
tween two fields the spin associated with the nucleus change direction. As a result
of transition of nuclear spins between energy levels, emission or absorption spectra
is obtained. This phenomenon is called nuclear magnetic resonance. This occurs at
afrequency of about 100MHz. The energy change involved in the change of nuclear

spin is of the order of 107 joules / mole.

We have E=hv=6.62x10" x100x10°
=6.62x107]
For one mole E =Nhv=6.02x10" x6.62x10™*
=3.99x107? joules/ mole
Electron spin resonance (e.s.r)

Electron is a charged particle spinning about an axis constitues a circular electric
current which in turn produces a magnetic dipole. This dipole interacts with a mag-
netic field. As a result of interation a transition of electron spins between energy
levels occur. This gives rise to emission or absorption spectrum. This phenomenon

is called electron spin resonances. This occurs at a frequency about 10Hz . The

energy change involved in the change of electron spin is of the order of 10 joules /
mole,

E=hv=6.62x10"x10" =6.62x107)

For1 mole E=Nhv=6.02x10"x662x10"
=13.99 joule / mole.
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2. Microwave reglon
This region extends from 3 x 10'°Hz to 3 x 10"?Hz (1cm to 100pm wavelength).

For a spectroscopists the microwave region is concerned with the study of rotat-
ing molecules and is called as rotational spectroscopy. The energy change involved
due to rotation of molecules is of the order of 100 joules / mole. (Remember

E = Nhv).

We know that dielectrics are of two types namely non-polar and polar. Polar
dielectrics like water, alcohol, CO,, NH,, HCI etc. are polar molecules. In polar
molecules the centre of mass of positive charges does not coincide with centre of
mass of negative charges. In this each molecule has zero dipole moment.

Now we consider the pure rotation of a polar molecule. Pure rotation means cen-
tre of gravity of the molecule doesnot move. During rotation the positive and nega-
tive charges change their places periodically (see figure below) This is similar to a
ﬂuctuatmg electric field of radiation.

Figure 3.2

Here fluctuation of dipole moment takes place. Regular fluctuation of dipole mo-
ment results in interaction in which energy can be absorbed or emitted. This gives
rise to a spectrum called rotation spectrum. The frequency of the spectrum corre-
sponds to microwave region. Thus all molecules having a permanent dipole moment
are said to be microwave active. On the other hand non polar molecules which do
not have permanent dipole moment no interaction takes place and no spectrum. Thus
non polar molecules are said to be microwave inactive. -

3. Infrared region |
This region extends from 3 x 10'2Hz to 3 x 10" Hz (100um to 1pm wavelength).
The spectrum arises due to vibrational motion of a molecule is called vibration

spectrum. The study of vibration spectrum is called vibrational spectroscopy. The

region of frequency of vibration spectra is in the infrared region. The energy change
involved due to vibration of molecules is of the order of 10* joules / mole.

The vibration of molecule actually gives rise to change in dipole moment. There
are three types of molecular vibration.
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1. Symmetric stretching vibration,
2. Asymmetric stretching vibration.
3. Bending vibration

Symmetric stretching vibration

When a molecule is alternately stretched and compressed, the dipole moment
remains zero during one complete vibration. Such a vibration is called symmetric
stretching vibration. As there is no change in dipole moment occurs, this vibration is
called infrared inactive.

For example consider the carbondioxide molecule in which the three atoms are
arranged linearly. The carbon atom has a positive charge and oxygen atoms have
negative charge. During symmetric stretch the molecule is alternately stretched and
compressed. (see figure below).

- 4+ -

= +—= - - ++ -
0—C—0 0—C—0 0-C-0
Normal state Stretched state Compressed state

Figure 3.3

Asymmetric stretching vibration

When a linear molecule whose one bond stretches while the other bond com-
presses and vice-versa results in a vibration called asymmetric (Anti symmetric)
stretching vibration. During this vibration the dipolement of the molecule changes
periodically. Thus the vibration is called infrared active. For example see the asym-
metric stretching vibration of carbon dioxide molecule.

Normal Upper bond stretched, Normal Lower bond stretched,
lower bond compressed upper bond compressed
Figure 3.4

Bending vibration

A linear molecule wholes bonds bend upwards making an angle then come to
normal state then bonds bend downward and again come to normal state is called
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bending vibration. For such a vibration the dipole moment of the molecule changes

E periodically and thus infrared active. For example see the figure of bending v1bra-

tion of carbondioxide molecule.

0—C—0 e e B 0—C—0
! | | 0 o0
Normal - ~ Bending upward Normal Bending downward Normal
"Figure 3.5

4. Visible and ultraviolet region
This region extends from 3 x 10"*Hz to 3 X 10‘6Hz (1um to 10nm wavelength).

When the valence electrons of an atom jump from one energy level to another
level we get emission or absorption spectrum. It is called electronic spectrum and
the study of electronic spectrum is known as electronic spectroscopy. The frequency
region of electronic spectra lies in 3 x 10'*Hz to 3 x 10'*Hz. i.e., It lies in the visible
and ultraviolet regions. The energy change involved is of the order of 10° joules /
mole.

5. X-ray region
This region extends from 3 x 10‘6m to 3 x 10'*Hz (10nm to 100pm wavelength).

When an electron strikes a target, before stopping it makes several collisions
with the atoms in the target. It may interact with atoms in two ways.

(i) When an electron interacts with the strong electric field of the atomic nucleus,
consequently it is decelerated. According to classical electromagnetic theory, it
would radiate electromagnetic energy continuously. This process can be thought
as if the electron is emitting a series of photons with varying energy. An ener-
getic electron passing through matter will radiate photons and lose energy.

The process by which photons are emitted by an electron slowing down is called.
bremsstrahlung (German word for braking radiation). These emitted photons are
called X-rays. The X-rays produced in this process are called bremsstrahlung X-
rays or continuous X-rays. The frequency of such X-ray lies in the above said re-
gion.

(i) When a high energy electron collides with one of the K-shell electrons in a
target atom, enough energy may be transferred, to the K electron, the atom may
be ionised. It will be left with a vacancy in its K shell. The atom is most stable in
its lower energy state so an electron from one of the higher shells will change its
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state and fill the inner shell vacancy at lower energy, emitting radiation. When
this occurs in a heavy atom, we call the electromagnetic radiation emitted an X-
ray. The photons emitted in such a manner are called characteristic X-rays.

The frequency of such X-rays lies in the above said region.

The energy changes involving the above said processes is of the order of 10
joules/ mole. The study of X-ray spectrum is called X-ray spectroscopy.

6. Gramma ray region

 This region extends from 3x10'®Hz to 3x10°Hz (100 pmto 1 pm wavelength).

It is due to rearrangement of nuclear particles electromagnetic radiations are emit-
ted from a nucleus. These photons are called gamma rays. The energy change in-

volved in this process is 10° to 10" joules per atom and frequency range lies in the

above said region. The study of the spectrum under this region of frequency is called

y-ray spectroscopy. -

Apart from the six spectroscopies discussed, there is one more important spec-
troscopy called Raman spectroscopy discovered by sir C.V. Raman.

Representation of spectra

In this section we shall deal with how to record a spectrum. For this we use a
grating spectrometer (Dispersive spectrometer). Grating spectrometer is suitable for
use in the ultraviolet, visible and infrared regions of the spectrum.

Grating spectrometer

It consists of a source of radiation S. Usually a white source is taken as the source
since it emits radiation over a wide range of frequencies. The radiation from the
source is allowed to pass through a narrow slit S, and falls on a concave mirror M,
from which a parallel beam of light is reflected onto a grating which is fixed on turn
table. The grating reflects many frequencies at different angles. This reflected beam
is allowed to fall an another concave mirror from which it is focussed to pass through
aslit S,. From S, the radiation falls on M, by which it is focused on to the detector.
Detector is placed at the focus of the mirror M,. Detector is a thermocouple for
infrared radiation or a photomultiplier for visible and ultraviolet radiation. Depend-
ing upon the intensity of radiation falling on the detector, the detector gives an elec-
tric signal. This signal is amplified electronically and used to drive a pen which
records the spectrum. The amplified signal can also be given to computer which can
draw the spectrum and can be stored in it for future processing.
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Figure 3.6: Grating spectometer

Purpose of slits | 7
1. Slits provide a sharply defined image which can be focussed on the detector.

2. Since the slits are made narrow, the frequency range of radiation which passes
through the slits are smaller, consequently the resolving power of the instru-

ment is increased.
3. Narrow slits prevent stray radiations coming from various components of spec-
trometer owing to scattering stray radiations entering the detector can make the

recording false. This can be avoided to an extend using narrow slits.

Recording a spectrum

There are mainly two ways of recording a spectrum. One is the frequency domain
spectrum, the other is the time domain spectrum. In the frequency domain spectrum
we record the detector output against frequency. In the time domain spectrum we
record the detector output against time. Here we shall discuss only frequency do-
main spectrum.

Now let us consider how a spectrum is recorded. If there is no sample present,
detector output will be a constant over the range of frequencies covered by the in-
Strument. This is only an ideal case. Now we shall see how to plot this on a chart
Paper. In frequency spectrum usually we plot percentage of frequency on the hori-
Zontal axis with increasing frequency and percentage detector output on the left
~ Vertical axis with 100% detector output as the origin and 0% at the top of the axis-
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On the extreme right vertical axis we simultaneously mark the energy absorbed by

the sample with zero energy absorbed as the starting point (at the bottom) and 100%
energy absorbed at the top. When there is no sample the detector output will be
100% and will be a constant over the range of frequencies and the energy absorbed

is zero. The corresponding frequency spectrum is shown in graph given below.
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100 ' 0

’ Frequency (%)
Figure 3.7

Now we imagine a substance placed in the path of the beam. The substance can
be placed anywhere in the path of the beam. In order to minimise the size of the
substance it is placed close to one of the slits S, or §, where the beam is narrow.
Usually the substance is placed near the slit S, where the frequency range is small

‘which is admitted by the grating. Suppose that our substance is having only two

possible energy levels E, and E,. The frequency corresponding to these levels is

B, -E . Thus some energy at this frequency will be absorbed by the

given by y =

substance (sample) from the radiation falling on it. As a result the detector output
will show a sudden fall at this frequency. The corresponding frequency spectrum is
shown in figure below.
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The above discussion of frequency spectrum is ideal and will not be obtained in
practice. In actual practice so many other factors will come into play so the spectrum
obtained will be different from that we already explained.

Factors affecting ideal spectrum

While drawing ideal spectrum we didn’t say anything about the source emissiv-
ity and sensitivity of the detector. Actually both of them are frequency dependent.
Because of this the horizontal line obtained in the case of no sample conditions will
be no longer horizontal. Moreover the detector, the amplifier, the pen recorder etc.
can disrupt the horizontal line and provide with larger number of extraneous fre- .
quencies arising from randomly generated electrical signals.

In ideal frequency spectrum we obtained a single frequency line spectrum. In
actual practice this is not so. This is because a range of frequencies are falling on the
detector rather than a single frequency since it is impossible to make the slit infini-
tesimally narrow. Apart from this the energy transitions in atoms or molecules donot
occur at a single frequency but always occur over a range of frequencies. As a result
the spectral absorption frequency line will be broadened. The actual frequency spec-
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trum is shown in figure below. It may be noted that in this transmittance is plotted as
the detector output and absorbance as the energy absorbed.

100
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Frequency (%)
Figure 3.9

I

Note : - Transmittance T, =—, where I, isthe intensity of incident radiation and 1
I

is the intensity of radiation transmitted out of the sample. Whatever be the
frequency range in which the spectrometer operate most of the modern spec-
trometers trace out the frequency spectrum as discussed above. However
there is another very effective plotting method is followed, which is called
the derivative of spectral trace. Here the derivative of energy absorbed or
emitted is plotted against frequency. This has mainly two advantages over
the former one. One is that from the absorbance trace we can exactly locate
the centre of a absorbance peak. Because at this point the curve of absor-

d
bance (A) is horizontal hence it slope (d—A) iszero. Secondly the half width
v

of the absorbance peak can be easily found out from the derivative curve see

figure below. This type of tracing curve is adopted in electron paramagnetic
resonance spectrometer.
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Figure 3.10

Basic elements of practical spectroscopy
Spectrometers play a vital role in the field of practical spectroscopy. Spectrom-

eters used in various regions of spectrum differ widely from each other in construc-

tion. Here we shall discuss about the absorption and emission spectrometers whose

basic features are common to all types of spectrometers.

Absorption spectrometer |
It is of two types one used in the infrared, visible and ultraviolet regions and the

other one used in the microwave and radio frequency regions. It consists of a radia-

tion from a white source from which radiation is allowed to fall on a sample. The

radiation coming out of the simple passes through an analyser (grating) which se-

lects the frequency reaching the detector. The signal from the detector passes to a
recorder which is synchronized with the analyser so as to produce a trace of the
absorbance as the frequency varies. In between the sample and the analyser a modu-
lator is placed. The modulator is an electronic device (or mechanical) which inter-
rupts the radiation beam a certain number of times per second, usually between 10
and 1000 times. This is to cause the detector to send an alternating current signal 10
the recorder with a fixed frequency of 10-1000Hz. It has two advantages. One is the
amplifier in the recorder is of a-c type which is in general simpler to construct and

{j
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more reliable in operation than a d. c. amplifier. The amplifier can be tuned to select
only that frequency which the modulator imposes on the signals thus ignoring all

other signals. In this way stray radiation and other extraneous signals are removed
from the spectral trace.

In the microwave and radio frequency regions it is possible to construct mono-
chromatic sources whose emission frequency can be varied over a range. In this case
no separate analyser is required since source acts as its own analyser. As there is no
analyser it is necessary for the recorder to be synchronised with the source - scan-
ning device in order that a spectral trace be obtained.

White ) Computer of
source baA  Sample | aana»| Modulator asa-| Analyser WA Detector = mecries

T A

Scanning device

- Computes of
Mo-nochm A Sample WA Modulator WA Detector e ) p :
matic source recofdes

! J

Scanning device

Figure 3.11

Emission spectrometer

It consists of a source of excitation, modulator, analyser, detector and a recorder
placed as shown in figure. A sample is placed in between the modulator and the
analyser. The analyser and the recorder are connected to a scanning device.

The excitation can be thermal or electrical but takes the form of electromagnetic
radiation. The modulator is placed between the source of excitation and the sample,
together with a tuned detector - amplifier, ensures that the only emission recorded
from the sample arises directly from excitation. i.e., any other spontaneous emission
is ignored.
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Figure 3.12: Block diagram of a typical emission spectrometer

Signal to noise ratio (S/N)

Signal to noise ratio is the signal divided by the noise, both quantities being given
in the same units. It gives the relative importance of the measured signal compared
to the noise in the measurement. The signal must be sufficiently distinguished from
the noise, for this the intensity of the signal must be three or four times that of the

noise. i.e., S 3 or 4. This requirement places a lower limit on the intensity of

observable signal.

Resolving power

Resolving power actually measures the performance of a spectrometer. The method
of separating two near by frequency spectra is called resolution and the ability of the
spectrometer to produce separate frequency spectra is called its resolving power.

The resolving power actually depends upon the exit slit width. We know that
molecular absorption takes place over a spread of frequencies. Usually this is very
narrow. Let us consider two such frequency spectra lying close to each other. These
spectra overlap in some region and become a single frequency spread as shown in
figure. Suppose this spectra is allowed to pass through the exit slit of width larger
than the frequency line width. In this situation both peaks of the spectra steadly
passes through the slit and reaches the detector. Thus we can say that spectra is not

- resolved. If we decrease the slit width so that it allows only one peak to pass through.

This shows that a narrower slit width would result in their resolution. This happens
when the slit width is less than the separation between the frequency lines. But the
narrow slit (high resolving power) brings a problem. A narrower slit allows only
less energy to pass through. As a result the strength of the signal reaching the detec-
tor would be weak. Thus it is not possible to distinguish the signal from the noise. So
we have to make a compromise between the resolving power and signal to noise
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ratio. Thus in experimental spectroscopy we have to find the minimum slit width
(maximum resolving power possible) consistent with acceptable signal 1o noise val-
ues. |

Note : It may be noted that the above discussion about resolving power is not pre-
cise.
Exit slit

(a) 0% Absorption

(b) ~ 5% Absorption /V\
A

() ~ 90% Absorption

(d) ~90% Absorption

— 100

(e) | % Absorption

Lo

T T f T =P Frequeney falling

(d) (¢) (b) (a) o exil slit
Figure 3.13: Illustrating the relationship between slit width and resolving power

The width and intensity of spectral transitions
The width and intensity are two properties of spectral transitions.
The width of spectral lines

We have seen that absorptions and emissions take place not at a single frequency
but varied over a range. Thus the spectral lines obtained will be broadened and we
have found that how the width of a spectral line is measured. The width of spectral
lines arise because the energy levels of atomic and molecular systems are not pre-
cise. This occurs due to several factors such as collision broadening, Doppler broad-
ening, Heisenberg uncertainty principle etc.
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Collision broadening

Atoms and molecules in liquids and gases are in continual motion and collide
frequently with each other. These collisions cause some deformations in the energy
levels of outer most electrons. It is due to this visible and ultraviolet spectral lines
have widths. It may be recalled that in visible and ultraviolet regions transitions
occur in outer electronic shells. The collisions can also affect the vibrational and
rotational spectra which explains the width of these spectral lines. When molecular

interactions are strong we get more broadening. This is why spectra of gases are
more sharp than those of the corresponding liquids. ‘

~ In the case of solids interactions are less, thus we get sharp spectra. But solid
spectral lines split into two or more components showing the evidence of interac-
tion.

Dopplef broadening

It is due to Doppler effect the particles show a Doppler shift (change in frequency).
Since the motion is random the shift occurs in both lower and higher frequency
regions. This results in the broadening of spectral lines.

In general, collision broadening is dominant in liquids where as Doppler broad-
ening dominates in gases.
Uncertainty principle broadening

According to Heisenbergs energy-time uncertainty, we have

AEAtzL
2n

where AE is the energy uncertainty of a state in which the system stays for At
second. h is the Plancks constant. If the system is in the ground state for an infinite

time (At=o0) then AE=0. i.e., energy uncertainty is zero. In otherwords ground
state energy is sharply defined. However, the life time (At) of an excited electronic
state is about 107%s.

h _ 6.62x107* _ 10
2nAt  6.28x107°
. The corresponding uncertainty associated with frequency is
AE 107%
h 66x10™
This is actually a large uncertainty. But this is small compared to the radiation

“AE:

=10°Hz
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frequency of such &ansiﬁons 10" -10"*Hz. So the natural line width is said to be
small. But in the case of electron spin state At=107"s
Av=10"Hz
This frequency is very large when compared with the usual frequency of such
transitions, 10° —10°Hz . Thus spectral lines becomes broader. In this context broad-

ening due to uncertainty principle becomes an important factor. In electronic transi-
tions collision and Doppler broadening are more important.

The intensity of spectral lines

A spectral line is an isolated dark or bright line resulting from a deficiency or
excess of photons in a narrow frequency range compared with nearby frequencies.

Intensity actually means the radiant flux passing through unit area in unit time.

In spectroscopy we usually measure the relative intensities of spectral lines. The
intensity of spectral lines depends on

(i) The transition probability between the two states (selection rules)

. : N -
(i) Population of states —2 =¢ &

: 1
(iii) In absorption sample path length ! and concentration c.

The relationship between concentration c, path length [ and the incident (I ) and
transmitted intensities of radiation is written as

- (1)
I

. o
where k is a constant for the particular spectroscopic transition under investigation.
The above equation can also be written in another form with base 10 instead of base
e using base changing rule for convenience.

Taking log on both sides we get

In [—I—] =—kcl
IO

In, (EI_J =In,,(I1/1y)In_ 10

[}

But In_ 10 =2.303
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2.303 In,,(1/1,) =—kcl

I 'k
Rl P cl=—¢cl
or lnm(loJ 2303
2 Ii= 0« e BT ¥)

[+]

The ratio Il is called the transmittance and is denoted by T.
T=10""
Here € is called the molar absorption coefficient or decadic extinction coeffi-
cient. or decadic absorptivity (decadic meaning related to base 10).

From equation 2, we get

_ o
log —)=—acl
\L
o
or log| X |=¢ecl=A
I

where A is called the absorbance or optical density.

The equation A =gcl is called Beer-Lambert law.

Since absorbance of a sample is proportional to / and c of the absorbing species
absorbance measurements are carried out in spectrometers rather than transmittance

I
(‘I—) which depends on [ and ¢ exponentially.
0
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IMPORTANT FORMULAE

1. Energy quantisation: E,-E, =hv

2. Expression for transmittance:
-l
IO

I, is the intensity of the incident radiation and I is the intensity radiation transmitted out.
3. Uncertainty principle:

h
AEAt = ﬂ
AE = hAv
AE 1
or AV= -~ A

4. Intensity of spectral lines:

_4E
(i) Population of states, N, =N,e T

(ii) The relation between concentration C, path length /, the incident intensity (I ) and
the transmitted intensity (I) radiation

l:e-kl

IO

I, w K
or L0 e

TI_ =T Transmittance
0

T=10"%

5. Beer-Lambert law: A =¢cl

UNIVERSITY MODEL QUESTIONS

Section A
(Answer questions in two or three sentences)

Short answer type questions
. What is spectroscopy?







e

Introduction

Spectroscopy in the microwave region is called microwave spectroscopy and is
concerned with the study of rotating molecules. In otherwords microwave spectros-
copy deals with rotational spectra. This spectra is due to transitions between differ-
ent rotational levels. If the transition occurs within the same vibrational level we
obtain a pure rotational spectra. Actually the region of spectra would be in the mi-
crowave or far infrared region. The study of rotational spectra provides a direct
method for the evaluation of molecular parameters. This study of rotational spectra
has been made use of in the construction of the microwave oven.

Classification of molecules

We know that the rotation of a body can be described in terms of rotational inertia
called moment of inertia (I). The same can also be used in the case of molecules. To
describe a molecule we require three principal moments of inertial,, I, and I . about
three mutually perpendicular axes. In general the three axes are chosen in such a
way that I, <I, <I.. Based on the relative values of principal moments of inertia
I, I, and I the molecules are classified into four groups. They are (1) linear mol-

ecules (2) symmetrlc tops (3) spherical tops and (4) asymmetric tops.

1. Linear molecules
The molecules in which atoms are arranged in a straight line are called linear

molecules. HCI, CO,, OCS, HCN, _
C,H, etc. are linear molecules. AL

Here I, is the moment of iner-
tia of the molecule about the mo-
lecular axis, I is the moment of
inertia about an axis passing - o
through the centre of gravity of
the molecule and perpendicular to
the molecular axis and I is the /
moment of inertia about an axis ,/
passing through the centrc of I
gravity perpendicular to both A Figure 4.1
and B axes. See figure 4.1.

=t
.
(®)
Q
Q
>
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It is from the definition of I, I, and I, it is obivious that I, =0 and I, =T . Thus
a linear molecule is described by I =0 and I =I.

2. Symmetric tops .

In symmetric tops molecules I, #0 and I =1 Consider a molecule such as
CH,CI, where the three hydrogen atoms are attached (bonded) tetrahedrally to the
carbon as shown below.

AL,
H\
H C G ol » 1,
/ /
H : .il
. ¥ Figure 4.2

A molecule of this type spinning about A axis resembles a spinning top and hence
the name symmetric top. This type molecules can further be divided into two classes
depending on whether I, is smaller or greater with respect to L.

If I, <I, =1 they are called prolate symmetric top and if I, > I, =1 they are
called oblate symmetric top. CH,Cl, CH,F, CH,CN, NH, etc. are examples of

prolate symmetric top molecules and BE,, BCl, are examples of oblate symmetric

top molecules.
3. Spherical tops
When all the principal moments of inertia of a molecule are equal, it is called a

spherical top molecule. i.e., A spherical top molecule is described by I, =1, =1¢
CH,, SF,, CClI, are examples of spherical tops.

" 4. Asymmetric tops
~ When all the principal moments of inertia of a molecule are different i.e.,

I, # 1 #1., such molecules are called asymmetric top molecule. H,0, CH,OH,
CH,OHCI (vinyl chloride) are examples of this. Majority of the molecules belong
to this group.
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Rotational spectra

The rotational energy like all other forms of molecular energy is also quantised.
This means that a molecule cannot have any arbitrary amount of rotational energy
but its energy is limited to a certain definite values depending on the shape and size
of the molecule. This permitted values of energy are called rotational energy levels.
In principle rotational energy levels can be calculated by solving the Schrodinger
equation for the system represented by that molecule. For simple molecules solving
Schrodinger equation is straight forward but tedious, while for complicated system
of molecules it is impossible to solve Schrodinger equation without approximations.
In our study we are not bothered about solving Schrodinger equation but we take
the results of existing solution and point out where reasonable approximation may
lead.

Interaction of radiation with rotating molecule

When an electromagnetic radiation of proper frequency interacts with rotating
molecule, rotational energy transition takes place. In this way we get a rotation spec-
trum. For this to happen the molecule must have a permanent dipole moment.

Consider a diatomic molecule having a dipole moment which will be along the
bond. When the molecule rotates about an axis perpendicular to the bond, the direc-
tion of the dipole moment changes continuously resulting in a periodic vanation in
a given direction. This generates a fluctuating electric field which interacts with the
electric field of the electromagnetic radiation leading to pure rotational spectrum.
This shows that energy can be exchanged only if the molecule has a permanent

Direction of

rotation of ®_® @'_Q

the dipole

Direction of
dipole moment E » fe i ———r

Fluctuation of the
vertical component of /\ /\ /\
dipole mement \_/ \/
Figure4.3
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dipole moment. If the permanent dipole moment is zero there will not be any peri-
odic variation. In the case of symmetric top and spherical top molecules, no rota-
tional spectra are observed since they have no dipole moment owing to their sym-

metry.
If y; and v, are the wave functions for the rotational states i and j, the transition

moment K; is given by

= [y} pyde
p; # 0 only if the molecule has a permanent dipole moment. The allowed transi-

tions are governed by the selection rule AJ =+1, J is the rotational quantum num-
ber. ‘

Rigid diatomic molecules (Rigid rotator)
Rigid rotator is the simplest model of a molecule. It consists of two atoms of
masses m, and m, connected by a rigid bond of length r. This is a two body problem

and can be reduced to an equivalent one body
problem, consisting of reduced mass

= WL . Axis is of rotation
UL at a distance r from the centre - | ~
m,+m, . .
of mass of the two atoms. The only motion 39
that can be quantised is the molecule about - TC T *m,
the axis passing through the centre of mass A
and perpendicular to the line joining the two e
atoms. Such a model is called a ngld rotator .r_"'
in a plane. : ’
Motion of such a motion can be described Figure 4.4

in terms of a single coordinate 6, the angle of

. rotation of the axis of the molecule. In a such a case, the potential energy remains

constant during the motion, since the distance does not change. Angular momentum

‘of the rotator is

'L=pvr=ur-v=ur-fco=pr2co
L=lo (u=I)
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where I is the moment of inertia of the rotator about the axis of rotation. According
to Bohr - sommer feld quantisation rule, we have

(f)de) =nh

J-:“ Ld¢=nh

If L is constant we have
L:-2n=nh

nh
L =—=nh where n=0, 1, 2....
271

Allowed energy values are therefore

12 n’h?

" o1 21

where En. is the kinetic energy. This picture is due to old quantum theory. But this
theory has been superseded by the new quantum theory or quantum mechanics.

To get the allowed energy values in the realm of quantum mechanics we have {0
solve the schrodigner for the rigid rotator. This gives

2

h
E,=—Il(+1), I=
! 21 ( )7l 0: 1)2,3 .....

where [ is the orbital quantum number.

Evaluation of I of a rigid rotator

The moment of inertia of the rigid rotator about an axis passing thrdugh its centre
- of mass and perpendicular to the molecular axis

I=mr’+m,r e (1)
From the concept of centre of mass of two particle system, we have

m,I, = m,r,
Using 1, +1, =1 (see figure)

L, =I—f

m,r, =m,(r-r)
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, - Axis is of rotation
or r,(m, +m,)=m,r .
| R r »|
= @ ®
g ‘ cM <
I ” |‘ I P PI
imilarly 1, =——- ~
Stmilarly & =, Figure 4.5

Putting the values of 1, and r, in equn. (1) we get

' 2 2
[ myr m,T ,
I=m, 2 +m,| —
m, +m, m, +m,

2.2 2.2 9
__mm,r m,mrt _ mm,r (m, +m,)
2 2
(m,+m,)’ (m,+m,) (m, +m,)’

m, +m,

Rotational spectrum of rigid diatomic molecule
We could see that a molecule can be considered as a rigid rotator. The energy
eigen value is given by

2 .

h
E.=—J(J+1), J= -
] 21 ( ), J 01 1, 2, ------ [

where J is the rotational quantum number (the angular momentum quantum number
1 is redesignated as J just to follow the standard symbols used in standard spectros-
copy text books). To analyse the rotational spectrum energy is expressed in wave

number (€;) units for convenience.

1 v hv EJ.
E=—=—=—=

"X ¢ he he

i f4] .
[0 N RPN

: Jg+1
' 2lhe¢  4nlc | 8n’lc (. )

- or
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g;=BJJ+1) » S (1)
where B is the rotational constant and is given by
h
sl e @)

If h, I and c are expressed in cgs, B has the unit cm™.
From eqn. (1), we can draw the energy level diagram. See figure below.

— e, =20B

I=4
Ag, =8B
J=3 y g, =12B
Ae, =6B
J = 2 A E] =6B
Ag, =4B
g, =2B
) =2Bt 6 =0
Spectrum

2B 4B 6B 8B

Figure 4.6 : Rotational energy levels and transitions for a rigid diatomic molecule

Denoting the lower state by J” and upper state by J', From eqn (1) we get

y=B=JQ'+tnp . (3)
=B=LT D . Lt s wor cn v R e (4)
Eqn (3)- Eq (4) gives
g, —€.=B[J'A'+1)-J"J"+1)]
= B[J’(J'+1)—J"(J"+l)] T — (5)

If we imagine the molecule to be in the ground rotational state (J" =0) and let the

incident radiation be absorbed to raise it to the next higher state (J'=1). Then
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Ae,, ., =2B
If tile molecule is raised from J=1toJ=2 (i.e.,, J"=1 and '=2)
o A, =B=[2Q2+D)-1(1+1)]
) Ag,_, ,,=4B .
" If the molecule is raised from J = 2 to J = 3 (i.e., J"=2 and J' =3)
| Aa,#a =6B o ,
In general, to raise the molecule from the state J to state J + 1 (i.e., J"=]J and
I'=J+1 R
' Agy iy =B+ +1+1)-JJ +D)
Ag,y ;. =BIA+1) T +2)-JT +1)]
=B[J? +37+2-J" -] |
Ag,,.,. =2B(+1) R o (6)

Thus a stepwise raising of the rotational energy results in an absorption spectrum
consisting of spectral lines at 2B, 4B, 6B, ..... .. Similarly a stepwise lowering of the
rotational energy results in emission spectrum. We have considered raising or low-
ering to the immediate level i.e., J changes by unity. This is because all other transi-
tions are spectroscopically forbidden. Such a result is called a selection rule. For the
rigid rotator (Diatomic) the selection rule is given by

=]J=J+l1

AJ = +1, plus sign for absorption and minus sign for emission.

From the spectral lines obtained, the value of B can be deduced from the spacing
between the lines. Knowing B, I can be evaluated using equation 2. From the value

of I(p:’) , the internuclear distance (r) of the diatomic molecule can be calculated.

Bond length of CO and the valid of the theory
Gilliam, Johnson and Gordy have measured the first line (J = 0) in the rotation

- spectrum of carbon monoxide as 3.84235cm ™" . From egn (6), we have
| AE,_,, =3.84235=2B
B=1.92118 cm™

Sl et T [-.-3: h
8n’cB : 8n’Ic
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6.626x10™ kg’

1= §x3.147 x2.99793x10° x1 92115 - Mere Bisin cm™ and cis in cm s
'1=14.5695x107" kgm?
2 mm, ., mm_  ,
: = = ‘ I =
gsing  I=H m, +m, m_ +m_ '

m.m, _ 19.92178x10™ x26.5613x10
m_+m, (19.92178+26.5613)x107¥

=11.38365x10""kg

1 14.5695x107 5wy
C = T TL3msesx10® - HOOx10%m’

I, =0.1131nm =1.131A°. .

Thj)s is in well agreement wi_th the experimental results.

N ote : - Knowing the relative atomic weights to be C = 12 and O = 15.9994 if

Absolute mass of hydrogen atom =1.67343x10"7k .
C 12x1.67343x107

— =27

m, : T O08 19.92178x10™"kg
15.9994x1.67343x10™

i T o= = N =226.5613x107kg.

Intensities of spectral lines

The pure rotational spectrum of a diatomic molecule is due to the change in rota-
tional energy levels. These energy levels are quantised. When a molecule rotates
from its allowed rotational energy level to the nearest allowed energy level, a spec-
trum (equally spaced spectral lines) is obtained. The allowed transitions are gov-

erned by the selection rule AJ =+1. Here our aim is to estimate the relative intensi-

ties of spectral lines. The intensity of a spectral lines depends upon the number of

molecules present in each level. This is given by Boltzmann's distribution function.
Moreover each level is (2] + 1) fold degenerate. (see foot note)

If N, is the number of molecules in the J* state we have
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N, o 2] +1)e ™

or N, (20 +1)e™ 7
h? | ; h-
where E. =——2-J(J +1) with B =
* 8l ~ 8n'lc
when N, is plotted against J, we get
4

a graph as shown below. The curve
shows that the population rises toa
maximum then diminishes. Maxi- Ny
mum population means maximum
intensity. In other words intensity |
will be maximum corresponding to
“nearest integral J value.
~ Toget tothe J value correspond-
ing to maximum N, differentiate N,

with respect to J and put equal to
zero. S M 4
We have .
'N, =A(2J+1)C-DJ(J+1) Figure 4.7
where = P—IE
; - kT
dN, -DI(J+1)
—L=A(2J +1)e™ " x =D(2T +1) + 2Ae™DI0+D
0 = —AD(J +1)2e™¢*? + 247D
= , = AD(ZJ +1)2e-m(1+1) — 2Ae—DJ(J+1)
or - -'D(2J+1)2 =2
| 2
2T +1)’ =—
s
=%
@+Y=yp
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2= -1

S

2
D

et fl_l
2D 2

Putting the value of D

o
2hcB 2.

The transition fromthis level will have maxlimum intensity.

Dégeneracy of energy level

- An energy level is said to be degenerate if there exists two or more levels corre-
sponding to same energy. The number of energy levels possible with same energy is
called degeneracy. Here we shall estimate the degeneracy of a rigid rotator for a
given J value. The energy and angular momentum of a rigid rotator are given by

1_.
E=EI“)2 and L =1Iw

1 P> 17

or =— =
2 1 21

or j L =42EI
Putting the expression for E

2
L= sz%mml =hIJ+1)

L=JJ0+1)

h is taken as the unit of angular momentum.

‘Equation (1) shows that same energy level means same angular momentum vec-

tor. For a given J, L has a constant value according to equation 2. Since [ beinga

vector this constant vector length will have different orientations with respect to a
given reference direction.
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when J =1 =2

A vector length /2 can
have three orientations with

respect to reference direction.

(see figure below). i.e.,J =1
is three fold degenerate.

Similarly for
1=2, E:Jg, we get 5 dif-
ferent orientations and for
J=3, L=+/12 weget7 dif-

ferent orientations. In general
we can say for a givenJ, there

are 2J 41 orientations. see
figure below.

ForJ] = 2, degeneracy 5

Example 1

o/

Reference direction
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% 1.414
+1

0

-1

~—1.414 ‘

. Figure4.9

Figure 4.8

For J = 3, degeneracy 7

What is the change in rotational constant B when hydrogen is replaced by deutiriu™

in hydrogen molecule.



lution
" h _ h

wehave B=grar0 ~ 8n’urc

1
B o —
or 1]

mym, _ m,
my+mg 2

For hydrogen molecule K=

m,

When one hydrogen is replaced by deutirium

B' oc l' '
m
For deuterium W' = mm D+mD = mZD = 2';1" =m,
p Ty
B' « —1-—
my
Eq2) : S
EQ(I) _E 2
© pB
' 2
N Chaﬂge In rotational constant
B- B = B- E - E
2 2
Exampe

(1)

e £2)

The "otational constant for H¥CI is found to be 10.5909cm ™. What is the val-

fB fOl‘ H]‘ICl
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Solution |
B=10.5909cm™" for H*CI.

If B is the rotational constant for H*'Cl .

Then we have

2':_& - (.-- Bml]

B H
m, x’mg m,x35my, 35

= B —%m“
m,+ "mg My +35my

37
m,x"'mg 37

) = = m, .
M m, +37m, 38 ®
B _35,38 (9085
B 36 37
or B'=0.9985%B = 9985x10.5909
 =10.5750cm™
Example 3

The r'nicrowave.spectrum of CN radical shows a series of lines spaced by a nearly
constant amount of 3.798cm ™. What is the bond length of CN?

Solution
2B= 3.798cm™ (given)
B= 1.899cm™
Using B= i
8n’Ic
I= I
8m’Bc
L HE6.626X107%,

2
8x7? x1.899x3x 1010 &M
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[= 14.7304x10"kgm’

we have
1= M
. me Xmy _ 12m, x14.003m,, .
H=  me+my 12m,+14003m,  *622my
6.4622
_ «1.67343x1077
K=" T1.008 x10"ke

10.7282x107"kg

4.7304x10™
r= JTB X 1.1718x10™"m

10.7282x107"

. o r=1.1718A
Example 4 ,
" How many revolutions per second does a'CO molecule make when J =3. The CO
bond length is 0.1131nm. Avagadro number 6.022x 10%.
Solution
r= 0.1131x10”m
Reduced mass of CO molecule

meXmg, _ 12x15.9949
H=  no+m,  (12+15.9949)x6022x10”

p=1.1385x107kg
1= pr —1.1385x107% x(0.1131x10

—9)2

= 0.1456x10*kgm’
We have rotational energy
1 h’
it = JJ+1)
> ST (
2n 1
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16
YT T arl
6.626x10™/3(3 +1)
U =

4x 1% x0.1456x107"

v=" 39.93x10"Hz-
Example 5 ' |
The first rotational line of '2C 'O is observed at 3.84235cm ™ and that of 2 '

at 3.67337cm "' . Calculate the atomic weight of °C, assuming the mass of 'Q ¢,

be 15.9949.
Solution
B= 3..84235 —for 2C 90O
B = 3.67337 — for *C '*Q
: B
B’ 1)

2o xmg 12x15.9949
Butp=" o Fm, (12+159949)(6.02x10%)

"m.xm, m x 15.9949
“me+m, (m+15.9949)(6.02x10%)

]
] '

u:

P m x15.9949 ~ 27.9949

—

T} m+15. 9949 2x15 9949

Substltutmg B B, p and p’ inegn (1), we get

3.84235 _mx15. 9949 27.9949
3. 67337 m +15. 9949 12x15.9949

1.046 = 2x15.9949 1 | 1sgs
m+15.9949




Microwave Seectroscory 169

1.046 15.9949m

0.14585 m +15.9949

7.1715m +7.17175%15.9949m
7.1715%15.9949 =15.9949m —7.17175m
11471142 =8.82315m

11471142
8.82315m

Atomic weight of *C is 13.001

=13.001

Example 6

The average spacing between successive rotational line of carbon monoxide is

3.8626cm ™ . Determine the transition which gives the most intense spectral line at
~ 300K.

Solution
| 2B= 3.8626cm™ (given)
B= 1.9313cm™
T= 300K,

For the most intense spectral line

Ty fkT 1
B 2hcB 2

1o J 1.381x10™ x300 1
B 2%x6.626x107 x3x10°x1.9313 2

J= 173456-05

J= 6.8456
Th_erefore most intense line is obtained for J = 7.
Example 7

The J _ 0 — 1 transition in HCI occurs at 20.68cm ™ . Regarding the molecule to
be a rigid rotator, calculate the wavelength of the transition J =14 —315.
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Solution
2B =20.68cm ™
~ B=10.34cm™
We have
sj =2B(J+1) |
g;=2x10.34(14+1) =310.2cm™
. 1 1 4
-~ Wavelength A=—=———=32x10"cm
_ g 310.2
A=32x10°m
. Example 8§

The OH radical has a moment of inertia of 1.48x10"kgm?. Calculate jts inter-

ity.
Solution
I =1.48x10*"kgm?
_myxm, 1x16
my+m, (1+16)6.023x10%
n =1.563x10"7kg
Using 2

I =pr
r =

1 [148x10 o
\/;_\/1.563“0'27 =910t m,

Angular momentum is given by

h
L=— JA+1)
2T

e 6.62x10™ 1T +1)

T =5.77x107*Js
, L 577x10® g
w=T=W=3.9XIOl3MdS_I.

nuclear distance. Also calculatg for J =5, its angular momentum and angular veloc-
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IMPORTANT FORMUL, AE

mnzﬂ energy levels of a rigid diatomijc molecyl
ule.

The 21
1. h2
E, =§_I_J(J +1),1=0,1, 2,

......

= 2 ith =
where L=y W H m, +m,

In, erms of wave number

1
Ej =BJ(J+1), Sj =3:
h

where B =gl
The value of rotational quantum number (J) corresponding to maximum intensity.

J_{k’r 1
~“\2hcB 2

m of a rigid diatomic molecule. '

3. The angular momentu
L=JJ+Dh
4. The frequency of diatomic molecule |
4n’l
5. Selection rule for rotational spectrum.
p,; =0, AT =+l |

6. ‘ The number of molecules in the J th gtate

E;

—_—

N, c(2J+De ¥

| h
Where E,;=BhcJ(J +1) with B= FI—E
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| UNIVERSITY MODEL QUESTIONS

Section A
(Answer questions in two or three sentences)

Short answer type questions

Classify molecules according to their rotational inertia.

What is a linear molecule? Give two examples.

What is a symmetric top molecule? Give two examplcs

What is a spherical top molecule? Give two examples.

What are asymmetric tops? Give two examples.

Spherical top molecules do not show rotational spectrum. Explain why 2
- Distinguish between prolate and oblate symmetric top molecules.

What is a rigid rotator?

Comment on rotational quantum number.

. Write down the expression for energy elgen value of a rigid rotator and explam the
symbols.

11. What is rotational constant? How does it influence a spectrum?
12. Draw the rotational energy levels and transitions for a rigid diatomic molecule,
13. What is a selection rule? What is it for a rigid rotator? _

14. What are the factors on which the intensity of rotational spectra depend.

200N Oy e N
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15. What is meant by degeneracy of eigen value?

16. How does the elasticity of bond length influence the rotational constant?

17. Give two informations derived from rotational spectra.

18. How will you evaluate the bond length of a molecule from rotational constant?

19. Write down the selection rule for the molecular spectrum of rigid symmetric top
molecule.

20. Depict a schematic representation of energy levels and transitions for the rigid prolate
and the rigid oblate symmetric top molecules.

21. Write down the equation for the energy levels of rigid prolate symmetric top molecule. -

Section B
(Answer questions in a paragraph of about half a page to one page)

Paragraph / Problem type questlons

Liioed ) e aa USRS

1. Briefly explain how does electromagnetic radiation interact wnth rotating molecule.
‘Molecules having permanent dipole moment exhibit rotational spectrum. Explain why.

2
-3. Evaluate the moment of inertia of a diatomic molecule.
4. Derive an expression for the rotational constant B.

——#




10.

11.

12.

13,

14.
15.

16.
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How will you establish the validity of the theory of rotagtion spectra of rigid diatomic
molecule?

Derive an expression for the rotational quantum number corresponding to maxlmum
intensity rotational spectra.

What is the change in rotatlonél constant B when ¢ of carbon monoxide (C '°Q) is

replaced by is °C-B of '>C '°0 is 1.92118cm™". [0.08449)
The rotational constant of H*C] is found to be 10.5009cm™" . What is the value of
1p ¥C1? (5.446cm™)
How many revolutions per second does CO molecule make when J = 47The rotational
constant of CO molecule is 1.9313cm™. [51.822x10"Hz)
The separation between lines in the rotational spectrum of HCl molecule was found to
be 20.92cm ™ . Calculate the bond length. (12824]

The rotational spectrum of ™ Br °F shows a series of equidistant lines 0,71433cm™
apart. Calculate the rotational constant B, and hence moment of inertia and bond length
of the molecule. ”Br=131.03x10""kg , *F=31.55x10"kg -

[B=0.35717cm™, 1=7.837x10*kgm?, r=1.756x10"m])
In the above problem find which transition gives rise to the most intense spectral line at

temperature 300K. 0=17)
A : mm, >
Evaluate the moment of inertia of a rigid rotator I= —_y r
1 2

Find the expression for the J value for which intensity of spectral line is maximum.

Calculate the rotational energy levels of HCl molecule in eV. Given bond length
r=0.13nm [126x107°J(J+1)eV]
The moment of inertia of the CO molecule is 1.46x10~% kgm® . Calculate the energy in
eV, and the angular velocity in the lowest rotational energy level of the CO molecule.

[4.74x107 eV, 1.0193x 10" rad /s]

. Section C
(Answer questions in about two pages)

Long answer type questions (Essays)

L.

Obtain an expression for the rotational energy levels of a diatomic molecule taking it as
arigid rotator.
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- Hints to problems
i |

to 6 See book work

B PmexMo i2p 12, m, = 159994
B "m.+m,

uv
= —— p:
B

13
meXmg,
=, "m=13.001
mc+m°

=

B _1046
1!

. i.e., -E- = 1,046
. B’

B'=—5_ B=192118
1.046

~. Changein B=B-B’

8. See example 2

llmz = h-

2 81:211(]+1)

L h? po__ R
= 702 use B= B =e———
4n’l 8n’lc 64n'T*c?

@' =16m°c*B I (J +1)
@ =4meBJ(J +1)

2= 4ncB\/J J+D

v=2cB[J(J+1)

L=2x3x10"x1.9313cB+/4x (4 +1)

v=51.822x10""Hz (see also example 4)
10. 2B=20.92cm™ given

h

USing B=
8n’lc

5 h- = 6.626x10™*
81’ Be 8xm? x10.46 x 3% 10'°




&

B 2 MicRowave SPECTROSCGRY
s 2.6743 x10 kgm

[=pr’

my XMg _ 1.673x1077 x58 06 x 19

m, X Mg (1.673 + 58.06)x 107
n=1.6261x10""kg

1, See example 3
jp. See cxample 6
. See book work
4. See book work

L 1.008 x 35 46
15. = 1.008 +35.46 x 6.023 x 10% 162710 ke

_— _
I=He =1627x10™ % (0.13x 10 =275 10 kem?

h? '
By=g 51U +1) = (6.616x107™) 3(J +1)
81" x2.75x 10 x1.6x10™"

2

h .
16. Ej=—-J(J+1), 3

8721 =1 given

Find E; and conyery into eV

or 2E

175
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Introduction |

The spectroscopy in the infrared region is concerned with the study of vibrating
molecules. In the last chapter we could see that how the elasticity of bond length
results in the vibration of molecule. The consequence of the elasticity is that the
atoms in a molecule donot remain fixed in relative positions but vibrate about some
mean position. It is due to vibration, molecules possess vibrational energy and this
energy is quantised. When the molecule goes from one vibrational level to another
energy is released or absorbed gives rise to a spectra called vibrational spectra. The
wavelength region of the spectra is in the infrared. Hence the study of vibrational
spectra is called infrared spectroscopy. This study gives us valuable information
regarding molecular structure, symmetry, bond strength, inter and intramolecular
interactions elc.

To develop the theory we have to make models to vibrating molecules. Here we
shall deal with two models. One is simple harmonic oscillator model another one is

the anharmonic oscillator model.
The vibrational energy of a diatomic molecule - (Harmonic oscillator

model)

Here we assume that a diatomic molecule behaves like an oscillating spring -
mass system. i.e., two masses m, and m, connected by a spring with force constant
k. Here m, and m, are masses of two atoms and the elastic bond acts like a spring

which obeys k

Figure 5.1

Hooke’s law. If r_is the distance between the two atoms in equilibrium. i.e., r_ is the
equilibrium bond length. Suppose the bond is distorted from its equilibrium len:glh
r_ to new length r. The bond, like a spring, obeys Hooke's law. Then the restonng

force f is given by
| f=—k(r-r,)
where k is the restoring force.

e L
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Then the potential energy of the system has the form

1 3
U==k(r-r)°
5 (r-r)
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ie., the energy curve is parabolic. This model of a vibrating molecule is called simple
harmonic oscillator model. The frequency of such a motion s given by

1 [k

vV, =—
° 2n H
Here p is called the reduced mass of the system given by

m,m,
m, +m,

u =

Now consider the diatomic molecule as a simple harmonic oscillator with potes

tial energy U = lk (r_rc)2 and the treat the problem quantum mechamcally, we
2

can arrive at the energy eigen values possessed by the diatomic molecsle 2uc &2
vibration. For this we have to solve the corresponding Schrodinger equation. Al
solving we arrive at the vibrational energy of such a harmonic system. Ths s gnes
by

1
Evz(v*'i)hvo.v:ﬂ, 1,2, ... e 1}

where v is called the vibrational quantum number.
Converting this into spectroscopic units, we have

E, [ l)hvU ( L)y,
E,=—=|V+—|—=|V+=|—
he 2 ) he 2)¢

1 (v. 1
., e = | -0 ¢ 3
( -) el ~

)

L

where V), is the vibrational frequency of the oscillator in wave pumbers. [ts uatt 8

em”.

From equation (1) it is seen that the energy levels are equally spaced.

. 1
i'e‘l EO = ;i‘\'u
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E. ==hv

F1T 0
5

E2=§-hv0
7

E. =—hv

3 2 0

. { N
ie, E,~E,=E, - E,=E - By = Ehvo More over it is seen that the lowest energy

possible is

. 1
E . =—hv,,
0 2 0 . |
This is called zero point energy. That is vibrational energy is not zero even at the
lowest vibrational level. This shows that a molecule always vibrate.

The selection rule for the har-
monic oscillator undergoing vi-
brational changes is

Cawv=t ] ‘ o=t
This shows that the transitions Y | T J

~are allowed only to adjacent vi-
brational levels. '

Vibrational energy changes
will only give rise to an observ-
able spectrum if the vibration can
interact with radiation. i.e., if the
vibration involves a change in the
dipole moment of the molecule.

(SR}

<|
A
——’-

%

[3®] ]

Energy (m™)
Néull
—
—
\
— I

il
/
L
LOE

- Thus vibrational spectra will be T !
observable only in hetronuclear " Inter nuclear distance
diatomic molecules like HF, HCI, R
HBr etc. Homonuclear molecules

like H,, N, and O, show no vibra-
. - /
tional spectrum since they haveno v
dipole moment. e ' , Spectrum

From eqn (2) it is seen that
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when a molecule goes from its vibrational level v to v+1, all the vibrational lines
obtained from harmonic oscillator are of the same frequency. The allowed vibra-
tional energy levels and transitions between them for a diatomic molecule undergo-
ing simple harmonic motion are shown in figure.

In reality molecules donot obey the laws of simple harmonic motion. This is
because real bonds, though which are elastic donot obey Hookes law. So we have to
resort to the second model - anharmomc oscillator model.

The anharmonic oscillator model

* When we come to real melecules they donot obey exactly the laws of simple
harmonic motion. This is because the real bond, though elastic, does not obey Hookes
law hence potential energy function will not be parabolic in nature. In order to ob-
tain the experimentally observed spectra sevaral potential energy functions have
been suggested. One which was successful in its attempt was suggested by P.M.
Morse and is called the Morse function and is given by

U=D [l-exp{ac.-0}* .. 3)

~ where D_is called the dissociation energy and a is a constant for a particular mol-
ecule.

The idea of dissociation energy comes as follows. If the bond between atoms is
stretched beyond a limit, there comes a point at which it will beak - the molecule

dissociates into atoms. This has also been incorporated in the potential energy func-
tion.

Put r = in the above equation, we get

U=D, f\




180  SransticaL Puysics, Souip Stare Physics, SpecTroscopy & PHoTONICS

Hence the term dissociation energy. The graphical variation of U with r is gjyey,
below.
From the equation, we gct ,

r=r, when U=0

when the two atoms are at equilibrium distance (r=r,) the potential energy at equi-
librium is zero, which is assumed.

Using the Morse function, solve the Schrodmger equation we get the vibrationg]
energy levels as -

1)_ 1y _
e s

where V, is the equilibrium vibrational frequency of the oscillator expressed in

wave numbers and X, is the anharmonicity constant. The higher anharmonic terms

are neglected. The first anharmonic term which is retained is small and positive for
bond stretching vibrations. The effect of anharmonic term is to crowd more closely
the vibrational levels. The energy levels are shown in figure.

Put v=0 in the energy equation we get the zero point energy.

. 1_ 1 _
1.8+ E ==V, ——XV,
2 4
1 ( 1 J_
or g =—|1-=x, |V..
2 2
Rewriting equation (4) as

g = 1—(v+—1-)x (v+-l-)V
v = 7 )% e e 5)

Comparing this equation with eqn (2) (energy levels of harmonic oscillator), we

get. |
- 1 o
VO =[1_(V+5)xc:|ve ‘ B —— (6)

This shows that the anharmonic oscillator behaves like the harmonic oscillator
but with an oscillation frequency which decreases steadly with increasing v.
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AV = +1 + 2 +3
e (7)

ly the lines of Av =+l +
ally on y 2 and +3 have observable intensity,
t

\ f"“-

GSVY - 7
tol ) /
Hotbands</’2¥—’A 1 /
Wl # jLAv=3
Av=lAVT L Av=2

0

r=r
c

LI

Energy levelsof a diatomic molecule

Spectrum
Figure : 54

" Atroom temperature nearly all the molecules are in the v =.0 state. i..e...the mosll-
ules have only the zero point vibrational encrgy: The absorption of radiation MU

the
refore, result in transitions starting from v = =0. _
1, with considerable

1,
The absorption band corresponds to V= —0—v=l AV=7
mtensnty
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2. The absorption band cbrresponding to v=0—v=2, Av=+2 with small in-
tensity.

=2(1-3¢ )% el AR L B )

3. The absorption band correspondmg to v=0->v=3, Av=+3 with normally
negligible intensity.

Ae=¢ —& —(3+l)v A 3+l zx v Ve 1 ’ —
v=3 v=0 n|e 9 f e " 2 ) X Ve

=3(1-4x )V, - i~ O e (10)
Since x, is very small (x, = 0.01), the abdve three absorption lines lie close to
V,, 2V, and 3v,. Thus the line near v, is called fundamental absorption while those

near 2v, and 3V, are called the first and second overtones respectively.

To cite an example, the spectrum of 'H*CI shows a very intense absorption al

2886cm™, a weaker one at 5668cm™ and a very w_eak one at 8347cm™ .

ie. (1-2x )V, =2886 = S (1)
2(1-3x,)V, = 5668 | R @)
31-4x)V, =8347 e by it I Yol #1 | o (3)

_Solvmg these we get the equ111br1um frequency Vv,

eq(2)-eq (1) gives V, —4x v, =2782 il P e (4)
eq (3) - eq (1) gives v, —6x,V, = 2679 T T ®)) |
' eq 4x6 - €q 5x4 gives |
' 2. =5976
| v ~.2988cm ™
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put this in eq (1), we get
ok (1—2xe)2988 = 2886

2886 '
1= 2xe =—=(.
3088 96586

2x, =1-0.96586
2x, =0.03414
X, =0.017

Using V, , we can directly calculate the force constant of HCI molecule.

1 |k

V= [

2n\p
| v 1 Jk v 1 _
or riact-oumm® b =R =N,

c 2mc\p c A

Ly 1 [k

VvV =—— [—

2nc \ p

. Squaring on both sides we get
| k=4n’c’ uv;
 k=4n® x(3x10°)? (2988) x1.6261x10""
hof HCl = 1.6261x107kg
k=516Nm™"

In the above discussion of transitions, we didn’t consider the transition from v =1

orv = higher levels. At normal temperature these levels are empty. But if the tem-
perature is raised or if the vibration has a low frequency, the population of state

v=1 becomes appreciable. The transitions from higher energy levels with the se-

lection rule Av =1 are called hot bands. They are called hot bands since high tem-
perature is one condition for their occurrence. The first hot band corresponds to

v=1—>v=2; Av=+1, normally very weak.
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‘ 2
1= _ -1- VX
A =€, ~&ya =(2+-2-)ve (2+ 2) =

Ae=(1-4x,)V,
Their nature may be confirmed by raising the temperature of the sample whep 5

true hot band will increase in intensity.

Example 1 _
The fundamental and first overtone transitions of “N'Q are centred at -

1876.06cm™" and 3724.20cm™ respectively. Evaluate the equilibrium vibration fre-
quency, the anharmonicity and the exact zero point energy .

Solution
Given

1876.06 : e (1)

(1-2x,)¥,
2(1-3x )V, = 372420 L

eq (1) x3-eq (2) gives ,
v, = 1876.06x3-3724.20

v, - 1903.98cm™ .

Puttihg the value of V, in eq (1), we get
(1-2x)1903.98 = 1876.06

187606
©1903.98

- 2x, =1-098534=0.01466
_0.01466 |

€ ]

=0.98534

=7.33x10
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 Zero point energy & = 5(1 ——xc)'ﬁc

2
1 7.33x107
=—|1-———]1
=3 ( . ) 903.98
g, =948.5cm™
Exélﬂple 2

The vibrational wave numbers of the following molecules in their =0 states
e HC1:2885cm™ , DCL: 1990cm™, D, : 2990cm™ and HD : 3627em™. Calcu.
|ate the energy change in kJ mol™ of the reaction.

HCl1+D, — DC1+HD

Solution

- 1
The zero point energy g, =—v

. €

- The zero point energy of (HC1 + D,)

el =%(2885+2990) =2937.5cm™

The zero-point energy of (DCI +HD)

_1 (1990 +3627) =2808.5cm™

2
" Energy released, ¢ =2937.5—2808.5=129cm ™.
To Convert this into joules multiply with hc
E=hc & = 6.626x10™ x3x10" x129
—2564.26x10™]
F
°r one mole the energy released

' 5] _1.543x10°/mole
E=2564.26x10’2‘x6.02x10 J =1.543x%

—1.543kJmole”’
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Infrared spectra-spectral transitions -

A molecule is a collection of atoms. The atoms in a molecule execute different
types of vibrational motion. The energy of most of these molecular vibrations is
quantised and corresponds to that of the infrared region of the electromagnetic spec-
trum. When infrared radiation of the same frequency is allowed to fall on the mol-
ecule, the system absorbs energy causing the excitation of the molecule to higher
vibrational levels. The molecules absorbing a quantum of energy give rise to bands
characteristics of the molecule from about 50 to 12,500cm™ approximately. This
range is generally subdivided into three regions. 12500 —4000cm™ near IR region,
4000—400cm™ middle IR region and 400=50cm™ far IR region. The middle IR
region is most important since it covers most of the vibrational transitions. The far

IR region is important when we deal with solids.

Infrared selection rule
The transition from a vibrational state i to state j is determined by the probability

of transition moment given by

by = Wiy de

where. y, and y ; are the wave functions for the vibrational states i and j and p is
the dipole moment operator. The dipole moment of a molecule is a function of nor-

mal coordinates Q, of the vibrational and can be expanded in a Taylor series.

Neglected hlgher order terms.

, Au
uff%[uo (GQJOQK}WT

. 0 .
u'u - 'J'OJ“'I”indt"'(aQu ] J."l"iQ_K‘I"jdt

K /o

I ;¥ dr=0 orthogonality condition.
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_(_aw '
”ij—( aQK] IWiQKWidT

For the transition to occur the probability of transition moment J; must be non
zero. For this to occur

L (—ai] £0 and
60 ),

2. [WiQuydr=0

Condition (1) says that at least one component of | must exist and there must be
a change in the dipole moment. Condition (2) says that the integral must be finite.

This is possible only if the vibrational quantum number changes by Av =11 under
harmonic oscillator and Av =1, £2, £3,.... for anharmonic oscillator.

Diatomic vibrating rotator

So far we have considered rotation and vibration of a diatomic molecule sepa-
rately. But in reality a diatomic molecule possesses both the motion simultaneously.
Le., a molecule rotates while executing vibrational motion and therefore rotational
_energy changes may also acompany vibrational energy change. As a result we ob-

tain a complex spectra which reflects both rotational and vibrational energy changes.
Since the energies of two motions differ considerably, as a first approximation we
consider that a diatomic molecule can execute rotations and vibrations quite inde-
pendently. This is called the Born - Oppenheimer approximation.

- The total energy of the diatomic molecule is given by

etolal = Emt + 8vib

e, _ . g
) € = &5 T €, 1N cm”t-

£ = &, = BI+1)-DI(1+1) +(v+§]ve —Lwlz)' 3.

Where J=0,1,2 ....and v=0, 1, 2

-----

The selection rule for the combined motions are the same for separate motions
e, Al=+] and Av=+1, 2, +3, ...
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Now consider the vibrational transition v =0— v=1. Denoting the upper state
by J’ and lower state by J* and assume that Band D are the same for both.

A€y, =€, —€p,o =BII'I'+1)-1""+ D] DI +1)* - I Q" +1)’]

{fteen] {4

Using the selectionrule AJ=1=J'-]"
Replace all J’ with 1+]", we get

Ag, , =B[(1+]J")(1+1"+1)-1"("+1) ]

SD[(+1) (143" +1) -1 ("+1)* ]

i e
+=V, —=X V,-=V_+—xV,

2 42 g

Ag, , =B[(1+]")(2+I")-1"(0"+1) ]
-D{a+ry[@+IV-1" ]} +7, -2 3,
Be,, =B[@+]"+21"+]" -1~ "]
-D(+I7) [4+417+17 =17 | +7,(1-2%,)
Ae,, =B2(J"+1)-4D(1+1") +7.(1-2x,)

The term (1-2x,)V, can be recognised to be the frequency of transition from

v=0— v=1"and is denoted by V,.

Ag;, =V, +2B(J"+1)-4D(1+]J")’ with J"=0,1,2 ... (12)
Similarly for the selection ruleAJ=-1 i.e., J'=]"=-1 we get
Ag,, =V, -2B(V'+1)+4D(1+J) with I'=0,1,2 = e (13)

Lines corresponding to AJ =1 are called the P branch and those corresponding

to AJ =+1 are referred to as R branch. -
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Lines arising from AJ=-2, -1, 0, +1, +2 are called O, P, Q, R and § branch
respectively.

Combining equations 12 and 13 by replacing J*+1, withmin eqn 12 and J'+1
yith m in eqn 13, we get.

Ag;, =V, +2Bm—4Dm’, m=11, 2, +3,

m takes positive values for AJ==1 and negative values for AT=-1.
Note that m cannot be zero because if m = 0 then J"+1=0 or J'+1=0 which

implies that J"=—1 or J'=-1, This is not allowed. The frequency V, is usually
called the band origin or band centre.

Usually the value of D is very small. This is because the value of B is about
{0cm™' OF less, while D is only nearly 1% of B. Since a good infrared spectrometer

has a resolving power of about 0.5cm™ it is obvious that D is negligibly small. In
such cases equation 14 becomes.

Ag,, =V, +2Bmem™ (15)

This represents the combined vibration rotation spectrum. Such a spectrum will

obviously consist of equally spaced lines with a spacing 2B on each side of V,,.
Since m# 0, the line at V; itself will not appear. If m# 0, we get Ag, , =V, so we

- can expect a spectral line. But m =0 is forbidden, because m =0 implies J" =-1 or
J'=—1 this is not allowed. So m =0 is not allowed. Hence we cannot get spectral
lines of ©,.

If we consider a spectrum corresponding to transition from v=0— v=1, we get
two branches (P branch and R branch) on either side of the unseen spectral line
corresponding to V. P branch corresponds to AJ =-1 and R branch corresponds to
AJ=+1. See figure below.

These theoretical predictions are in agreement with the experiment,
Further more analysis of the vibration-rotation spectrum of a diatomic molecule
allows us one to determine the band V, and B from the spacing between the lines.

From B, one can calculate the bond length and from V, the bond force constant.
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S AT=-1 M=
«—> .
7 :

3 A T
2 - j
1 —
6
5
4 v=0
t ,
. 2
1
0 :
Rotational energy levels of the vibrational states v=0— v =1
) 5 B | 4B B
<> <> <>
!
\ 8-
P branch - Yy R branch
Spectrum '
Figure 5.5
Note: - we have Ag, , =V, +2Bm when m =1, which corresponds to first P line.
i85 A} =V, -2B

i T when m = +1, which corresponds to first R line

i.e; Ae;! =V, +2B
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geparation between first R line and first P line on either side of the V, line is
Aey, — €, = (V, +2B) - (v, —2B)=4B
Sihﬁlarly for m =-2, which corresponds 2™ P line
e, A&l =Y,-4B i
| A} —Ag}? = (v, —-2B)-(v,-4B)=2B
‘When m =2, which correspond to 2™ R line.
AR =V, +4B
Ae}? — Ag)! = (V, +4B)—(V, +2B)=2B

It shows that the spacing between any two adjacent P line or R line is 2B.
Example 3

~ The fundamental band for HCl is centred at 2886cm™ . Assuming that the inter

nuclear distance is 1.276A.. Calculate the wave number of the first two lines of each
P and R branches of HCI.

Solution
Vo= 2886cm™
r=1276A=1277x10""m

myxmg  1.008x3545 0

n of HCI = = 023x10%
my+mg (1.008+35.45)

= 1.6275x107kg

h

- The rotational constant B=
; 8n2przc

6.626x107%
8xm? x1.6275x10™ x (1.276x107™%)? x3x10'°

B= 10.6129cm™
Using  (Ag), = V,+2Bm
(Ae)’ =  V,—2B=2886-2x10.6129 =2864.79cm™

B =
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1

(A" = ¥, —4B=2886-4x10.6129 =2843.55cm"

J
1

(Ae)" = ¥,+2B =2886+6+2x10.6129 =2907.23cm"

(M) = ¥, +4B=2886+6+4x10.6129=2928.45cm™ .
Example 4 '

Calculate the energy in ¢! of the absorbed when HCI molecule goes from
the state v=0,J"=1->v=1J'=0 and v=0,]"=15v=1, J'=2. Given
v, =2990cm™, x, =0.0174, T =0.1274nm and ., =1.6275x107kg.
Solution

v=0, J"=1— v=1, J'=0 corresponds to the first line in the P brahch

So  (de),,=(1-2x)V,-2B

. h 6.626x107
Ut B =gruc 81 x1.6275x10°7 x(0.1274x10~) x3x 10
B=10.589cm™

5. (8e)®, = (1-2x0.0174)2990-2x10.589

= 2885.95-21.178
= . 2864.77cm™" ,
v=0,]"=1—->v=1171=2 corresponds to the second line in the R branch
(m=2)

- (Ae® =(1-2x,)V, +4B

= 2885.95+42.356
= 2928 cm™.
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IMPORTANT FORMULAE
m:ﬂtor model: LT
a?
J. H RestOﬂng force: f= —k(r = rc)
3)
; 1
Potential energy: U= -2—k(r -1
b) '
) ; 1 [k _ mm,
Frequency of the oscillator: v= 7 \/% p= —-——ml rm,

: » vifrational energy of oscillator:

E, =(v+%}hvo, v=0,1,23,......

. ) B +l VO
or S Y
v

g, =| v+ s Vy = 1%
v 2 0* Y0~ k - C .
3, Selection rule for harmonic oscillator system: Ay =+]

4. More function:
U=D,[1-¢ |

5. Vibrational energy levels of a anharmonic oscillator using Morse function:

g = v+lV— v+12'\7x
v 2 e 2 e®e

Selection rules for the anharmonic oscillator:
Av==+] +2,+3

Rotational-vibrational energy of a diatomic molecule:

€ = BIJ+1)-DI*(J+1)"+ (V - %)V - (\' + %) XY,
Selection rule for the combined (rotational and vibrational) motions:
AJ=+]1 and Av=1%],12, %3

The spacing between any two adjacent P-lines or R lines = 2B.
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UNIVERSITY MODEL QUESTIONS

Section A :
i n3 : ey
(Answer questions in two or three sentences)

Short answer type questions

b3

_ﬂ'\ P"’ "‘* "

10.
11.

12

-

I3.
14.

15.
16.
17,
I8.
19.
20,
2].
22.

27.

What is infrared spectroscopy?
What is vibrational spectra?

- . o - . e et [ £, l)
What is zero point energy? What is its sigmticance:

What is rotational quantum number?

Write down the selection rule for the harmonic oscillator under gomg vi brational chan ges,
Write down the expression for the vibrational energy of 4 harmonic oscillator system

and explain the symbols.
Draw the allowed vibrational energy levels and transitions between them for a diatomic

molecule undergoing simple harmonic motion.
- . - - (7
Homonuclear diatomic molecules donot show vibrational spectra. Why?

Real molecules donot obey exactly the laws of simple harmonic motion. Why?
Explain the diatomic molecule as a simple harmonic oscillator model.

What is an anharmonic oscillator?

What is Morse function?

Draw graphical representation of Morse function.

Write down the expression for energy eigen value of a diatomic molecule as an
anbarmonic oscillator.

Write down the selection rules for the anharmonic oscillator.

What is fundamental absorption of an anharmonic oscillator?

What are first and second overtones of absorption of a anharmonic oscillator?
What are hot bands? Why are they called so?

Explain the formation of IR spectra.

What are the selection rules for the infrared spectra?

What is Born Oppenheimer approximation?

Writz: dowp the expression for total energy of a diatomic molecule as a vibrating rotator
in terms of wave number and explain the symbols,

« Explain the P-branch and R branch of a rotation vibration spectrum.

Show that the spacing between any two adjacement P lines or R lines is equal to B.

- Write down the expression for the separation between two maxima of the branches.

What are the selection rules for the rotation-vibration specira
Draw the rotational energy levels of the vi brational states + 0 1
i FU=—v=]-
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I. Show that the spacing of vibration:
oscillator are equally Spaced.
2, The fundamental and first oyertone transitions of
4260.0 cm™', Caleculate the equilibrium
stant and force constant of the molecule

CO are centred at 2143.3 emand
oscillation trequency, the anharmonicity con-

[V. =2170em™, x, =0.006124, k = [905Nm B

3. The fundamental vibration frequency of HCI is 2989¢m;!

. Find the force constant of
HCI bond.

[516.9Nm "]
4.  The vibration frequency of "H *C) is 2990.6cm ™~ without calculating the bond con-
stant estimate the frequency of 'H (] and *D*(]. [2988cm ™, 2144cm™]

5. The mean intermolecular distance for HCI in the v = 0 and v=1 level is 12934 .
Calculate the difference in cm”™ between the first P line and the first R line in the
rotation - vibration spectrum. Given It of H( =1.6275x10kg. [41.12cm™ ]

6. Calculate the energy in e of the photon absorbed when NO molecule goes from the
state v=0, I"=0—>v=1, J'=1. Assume that the v = 0 and v= 1 states have the same
B values. Given V. =1904cm™ x, =0.00733, 1,=0115lnm and
Hyo =12.3975x1077 kg . [1879.49cm "]

7. The frequency of OH vibration in CH,OH is 3300cm ™ . Estimate the frequency of OD
stretching vibration in CH,0OD. [2401em ™)

Section C
(Answer questions in about two pages)

Long answer type questions (Essays)

L. Discuss the theory of rotation-vibration spectrum of 2 diatomic miolecule.

2. Discuss the rotational spectra of a diatomic molecule as a (a) harmonic oscillator
(b) anharmonic oscillator.

Hints to problems
2, (I-2x)v.=21433 . (1)
2
2(1-3x_)v, =4260.0 a2

1-3x.) 4260
eqn2_+2( ol —1.9876

eqn | (1-2x,) 21433
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or 2—-06X, = 1.9876— 1.9876 % 2%,
71,9876 =6x_ —1.9876% 2%,

0.0124 = 72.0248){c

00124

x = —6.124x107-
< 20248

Put this value in eqn (1), we get V, =2170cm .

Force constant, k =4r'c’pv,

m XM, 12%15.9994

- : — =1.1385x10 kg
mg+my (124 15.9994)6.02 x 10

uof CO=

k =1904.8 = 1905Nm~

3. Using k =41;3c"‘,_ﬁj: v, =298%m

p of HCl = My XMg 1.673x107% x61.38%10°%
my, + Mgy (1.673 +61.38) x 107"

=1.6286x107"kg

k=516.9Nm™
4, We have V, =_1_ E
2n\p

— I
or v —

"k

V. dirg 35

elwva My (Mg XTmy my+ 35 38

(v,) _\/ e —— —a =\/ x—=0.9992
it VHp Ymy+Tmg  m,xmg 36 37

(V. )y =0.9992x2990.6

| =2987.9 ~2988cm ™
Similarly the other one

5. Using g—__D

SR;W ‘e
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Put ¢ =3x10"cms™ 50 B wij] pe imem™,
We get B=10.28cm ' our fequirement is 41,

The transition v=0, J* =0, _ LI =1 corresponds to the first line in the R branch,

Ae=(1-2x,)V. +2B

h
8n’ur’c

where B =

Voc\f;

0D
Von

Y Vo =1.37447, .

= EQP_:JMx-[Eﬁzl.3744
Moy 16+2 16x1




Introduction . fification by stimulated Emission of Ryq:,

Laser is the acronym for Light Ampllic: : adia.

ROm; _ .o vention of the second half of the last ce

Laser is one of the outstanding mvention o fr f traditi ”‘?“3’-

Laser is a light source but it is very much d;tterf:n.l rom "‘R”Yh(’. Il _ll‘lnnul light
sources. Laser is a photonic device (0 l-‘f(’dmjc |!nense, mmmf ”.m?d““'__c”h“fcnl
and unidirectional beam of light. Lasers are in fact gﬁﬁ?ramfif’f light. Chey are

based on the amplification of light by mr:an..s' ol snmulath c?r?ns.sru?ﬂ of rud.latmn of

atoms or molecules. In 1917 Einstein predicted the possibility of such stimulateg

radiation.

In 1952 Townes. Gordon and Zeiger in U.S.A. and Basov an-cl.P.roklwlrov in USSR
independently suggested the principle of generating and amplifying microwave os-
cillations based on the concept of stimulated radiation. It lead to the invention of
MASER (Microwave Amplification of by Stimulated Emission of Radiation) in 1954,
In 1958 Townes and Schawlow and Basov and Prokhorov independently expressed
their ideas about extending the maser concept to optical frequencies which lead to
the invention of laser. Townes, Basov and Prokhorov both received Nobel prizes for
their work in this field. In 1960 Theodore Maiman of Hughes Research Laboratories
(HRL) fabricated the first laser using aruby crystal as the amplifier and a flash lamp
as the energy source. After this a series of lasers were discovered.

It is due to the characteristics of lasers such as extreme brightness (intensity),
monochromaticity, high directionality and coherence, they have wide applications
in different areas. The laser is used in metal working such as welding and piercing
holes in metals. Lasers are used as saw to cut thick metal sheets, as a phonograph
needle for compact discs, as a knife during surgical operations (bloodless surgery).
They are u.?ed in optical communications, weapon guidance in wars, detecting and
;ﬂﬁ: ngf ;J:_];IC.L"S a.l greale‘r ‘dls'tanc.e; in hologra_phy and- in a wide vari'ety of othef
field namel ls;lorery of laser and its technological applications gave birth to a new

12 ¢ photonics,

Quantum behaviour of light (pre]iminary ideas)
In 1900, Max Planck - ‘
n 1900, Max Planck Proposed that light consists of discrete bundles of energy:
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Tepresents the minimum energy unit of light, Each

photon carries an amount of ENergy proportional to the frequency of the light wave,

E:nhu,wheren=1,2,3

Absorption and emission of light

In an atom, an electron in the ground state is stable and moves continuously in
torbit without radiating energy. When the electron receives an amount of energy
equal to the difference of energy of the ground state and one of the excited states, it
absorbs energy and jumps to the excited state. There are variety of ways in which the
€nergy may be supplied to the electron. One way is to illuminate the material with

........

light of appropriate frequency - E, -E,

- The photons of energy hy = B,—E,

- h :
induce electron transition from the energy level E, to the level E, as shown in figure,

.......... Emitted photon

--------
- .,
- -
, a*

_____
-------------------

Excited atom De exited atom
Figure 6.1
However, the electron cannot stay in the excited state for a longer time. '.l‘be
coulomb attraction due to the positive nucleus pulls the electron back to the initial
inner orbit and the electron returns to the ground state. The excited electron has
excess energy equal to E, — E, and it has to get rid of thi§ energy in order to corl?e 'to
the lower energy level. The only mechanism through which the electrox? c;m }:sfr;t;
eXcess energy is through the emission of a photon. Therefore, the excited elec

i ground state.
€mits a photon of energy hu=E, —E, and returns to the g
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actually see electrons jumping frop, =

ssion of light which occurs on its gy, t
for the light coming from candeg

izht from any source we
: type of cmi
esponsible ig
ntional sources of light.

When we see | .
cited states to lower states. This :
known as spontaneous emission and 15T
electric bulbs, fire, stars, sun eic. conve

opulation -
l ‘The atoms of each chemical element have lhtir‘(—?:\in‘Lilfuirufl'irltsll;;}:sl(;r?q of ep.
eroy levels. The energy difference between the <ULL.-U~?1."1 encrgy 5 ‘—I : ” an thlnm
i.s::'t‘ the order of leV to 5eV. The energy lecha»[;ue L(Jmnl‘(f;? lli: d l*nle'{m,mR in g
system which is composed of identical atoms. We can 1h‘ew‘orc .Sld,y‘l ml_u Certaip
number of atoms occupy a given energy Stale. T'he num.hr:r of Jlf'_)rni\ per |.1|1f[ ""”h'“]]e
that occupy a given energy state is called the pnpulalmnﬁ of t)h:u :;Frg:_v state. The
population N of an energy level E depends on the temperature and is given by

Nidie “; -~ (1)
where k is known as Boltzmann’s constant.

This is called Boltzmann's equation.

In a material. atoms are distributed differently in different energy states. The
atoms normally tend to be at their lowest possible energy level which need not be
the ground state. At temperatures above OK, the atoms always have some thermal
energy and therefore, they are distributed among the available energy levels accord-
ing to their energy.

At thermal equilibrium, the number of atoms at each energy level decreases with
increase of energy level. If we consider two energy levels E and E, their popula-
tions can be computed with the help of Boltzmann’s equation. Thus

E,
N} =g kT
52
and N, = ¥
[ (E.~E;)
N, -=2 |
NS (@
N,

"T is called relative population,

\ . -
A8 .,fn example let us calculate the atomic population of hydrogen gas at room
temperature at 300K at the first excited level
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Here E, ==13.6eV, E, = _3 390y
3nd i =300K .

E;~E =-339- —13.6=10.21ev

KT =8.6x10"° %-3001( =0.025eV

10,21
- - 2,

=g 0035 _ ,40h4

N =0
I
[[. shows that at room temperature all atoms are in the ground state. If temperature
is raised to 6000 K
N S0t ‘
N =T =25x10”
|

It shows that in a material at thermal equilibrium more atoms are in the lower
energy state. We call such a distribution of atoms as normal distribution.

Einsteins prediction of stimulated emission

Einstein predicted in 1917 there must be a second emission process to establish
thermodynamic equilibrium. For example if we illuminate a material with light of
suitable frequency the atoms in it absorb light and go to higher energy states. The
excited atoms tend to return randomly to the lower energy state. As the ground state
population is very large, more and more atoms are excited under the action of inci-
dent light and it is likely that a stage may be reached where all atoms are existed.
This violates thermal equilibrium condition. Therefore, Einstein suggested that there
could be additional emission mechanism by which the excited atoms can make down-
ward transitions. He predicted that the photons in the light field induce the excited
atoms to fall to lower energy states and give up their excess energy in the form of
photons. He called this second type of emission as stimulated emission.

Interaction of light with matter

According to classical physics the process of transfer of energy from atom to
light is not possible. But this is possible from the point of view of quantum mc?chan—
ics. The transfer of energy from atom to light results in the light amphﬁcrduon. A
light amplifier can be further converted into a source of light‘havmg superior cl.xar-
acteristics compared to traditional light sources. This superior c'f\ara‘clensug hgm
source formed due to the transfer of energy from atom to light which is amplified is
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= 1ent of laser we h:
d the developn : € have 20 for the

termed as laser. In order to understan
quantum mechanical treatment.

We know that the radiation in
and each photon carries
atoms in the material have an energy differen,

e,

cident on @ material is a stream of photong accorg
! rd-

: an energy E =hu. We agg
ing to quantum theory ; V. WE assume g,

two energy levels of the
E, - E, = hu. When photons travels
cess are likely to occur. They are absorpti
emission, We study these in detail.

hrough material medium three differeny pr
0-

- aneous emission and <t
on, spontan 10n and stimylgyeq

Absorption

Induced absorption
Suppose an atom is in the lower energy level E . If a photon of energy

hv=E, - E,, is incident on the atom, photons gives its energy to the atom and
disappears. Then we say that the atom absorbed an incident photon. As a resylt of

this absorption the atom jumps to the excited state E, . This process is called in.
duced absorption. This process may be represented as
A+hu—> A’

where A denotes an atom in the lower state and A" an excited atom.

E

2

T E.

. = E E.

Incident photon
Before absorption After absorpti
absorption
Figure 6.2

The numbe i
r of atoms per unit volume that makes upward transitions from the

lower level to the u
: pper level per second is " aze
is represented by p nd is called the rate of absorption transition. It

R'.h- :—.d;N_l_O

dt
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where -E—N—l
dt

stands fi
or the rate of decrease of population at the lower level. The

: absorpti ANsiti
rate of abSOrpuion transition can also be represented by the rate of the increase of

population at the upper leve| E, . Thus

dN
R, =—2
Pt
R.‘Ih’. = ‘%: sz
dt dt

The number of absorption transitions occuring in the material at any instant will
be proportional to the population in the lower level and the number of photons per
unit volume in the incident beam. The rate of absorption may be expressed as

R, = B,u(u)N, — —

where B,, isa constant of proportionality and u(v) is the energy density of incident

light. B, is known as the Einsteins coefficient for induced absorption and it indi-
cates the probability of induced transition from level 1 1o 2.

It may be noted that at thermal equilibrium, the population in the lower energy
state is far larger than in the higher energy state. Therefore, as light propagates through
the medium, it gets absorbed

Spontaneous emission
An atom cannot stay in the excited state for a long time. In about 1, the atom

comes back to the lower state E, by releasing a photon of energy hvo=E, —E, . This

emission of photon occurs on its own and without any external impetus given to the
excited atom is called spontaneous emission. This process is represented as

A" > A+hy

—— E, E,

E —e— 5,

Figure 6.3
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n - oiven h\
’ T . R isgiven U
The rate of spontaneous transinons B,

. e oo b excited level.
where T, is the average life time in the exc

r : B 8 - L
The number of photons generated will be P“‘P“m“""l to the population pf the

excited level only and can be expressed as
=) I
R,=A,N, |
: : instein coeffici for spontaneous emission, It i«
. known as the Einstein coefficient fc L Jtiga
where A, is known a th

function of frequency and properties of material. It indicates the probability of spon-

iti ay 2 the spontaneous emission i«
taneous transition from level 2 to 1. Ttmay be noted that p Ous emission ig

independent of the light energy.
Comparing eqns (1) and (2) we get

or T =—
sp A
21

i.e., The reciprocal of probability of spontaneous emission gives the life time. Life
time is the average time for which the excited atom would remain in the upper level
before undergoing spontaneous transition. It may also be noted that the rate of spon-
taneous transitions from E, to E, is zero.

ie., A,=0

Characteristics of spontaneous emission
(i) This process is probabilistic in nature, hence cannot control from outside.

(ii) The instant of transition, direction of propagation, the initial phase and
polarisation of each photon are all random.

(1it) The light resulting through this process is not monochromatic.

" LThe ueht Intensity goes on decreasing with distance from the source. This is
ecause different atoms emit photons in different directions.

(v) Itis due to the superposition of waves of random phase, light emitted is incoherent:
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stimulated emission

Suppose a photon of energy hu=E, -E

ergy level E, before s Spontaneous emission take place. Then the excited :

energy level E, makes a downward transition 1o energv.Ievel E by ::1[:' "dmm .
photons each of energy hy . This ' i e
phenomenon of forced phot
external agency is called sti

Interacts with an excited atom at the en-

process 1§ called stimulated emission, Thus the
On emission by an excited atom due to the

nt . action of
mulated emission or induced emission,

— E,

o

A hU

Mhu

E B E

Figure 6.4
The process may be represented as

A" > A+2hy
The probability that a stimulated transition occurs is given by

(Py)y, & u(v) or (p,,), = B, u(v)
The rate of stimulated emission is given by

R, =B,, u(v)N,

where B,, is the Einstein coefficient for stimulated emission. It indicates the prob-

ability of stimulated emission transition from level 2 to level 1.

Characteristics of stimulated emission

(i) This process is controllable from outside.
(ii) The proton induced in this process propagates in the same direction as that of

stimulating photon.

(iii) The inducing photon and the induced photon are identical in frequency, phase
and plane of polarisation.

(iv) In this process photons get multiplied. One photon imeract,ing. witb an exgiled
atom, two photons are produced. These two ph()[()l:l:-; travelling in the sgme
direction interact with two more excited atoms, totally four photons are produced.
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’ l]I' I}h(“(]ﬂﬁ llkl.: E.Willim(.‘hc

.t Jarge numbe
nd get large like

The process continues 4
manner.

(v) All the light w
of the waves are in phase.
constructively. It results in light

(vi) The net intensity of light emitted will be pmpnrlional to the square of dloms
radiating light. Thus

Lot = NI

=3 1 ] i< 2 Ay ‘U I ol .“ IS ~ .7 Sy .
ht emitted is of very high intensity so we can say light j

are due to one initial waye and
e ( -

e Anhar 1
are coherent and inte all

aves generated in the medium
l'r(:rc

Thus the waves
amplification.

This means that lig
amplified.

Spontaneous emission dominates stimulated emission

All the three processes namely absorption, spontaneous emission and stimulated
. . . . . . . % -

emission occur simultaneously in a medium, when light interacts with medium (mat
ter). Under steady state condition the absorption and the emission processes balance

each other.
Thus’ R.lb\ = Rsp + Rsl
Pel, B,,u(v)N, = A, N, + B, u(v)N, e (4)

If we consider a medium in thermal equilibrium. In this condition there are more

number of atoms in the lower level than the higher level. Thatis N, > N, . Since the
probz.it_yilily for absorption transition (B ,) is equal to the probability forﬁ stimulated
transition (B, ), a photon travelling thro-ugh the medium is more likely to get ab-
sorbed than to stimulate an excited atom to emit a photon. Therefore usually the
process of absorption dominates the process of stimulated emission. S:in.lilarly, an
:}t\(;m 1::'31 is at the excited state is more likely to jump to the lower level on its own
inc?denl(nt%e sat:nm;lfzfl:); Photon. .It 1s due t(-) the fact that the photon density in the
Tk o ol allll 1c1e;1l to .mteract with the excited atoms and the photons
tevel O this lhower evel becaus:e (?f the large population available at that

, the spontaneous emission dominates the stimulated emission.

Einstein coefficients
(i) Wef "
€ found that the probability that an absorption transition is given by

P, xu(v)

Psz‘ =B u(v)
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The constant of Pmpf)rtiuna[ity is known as the

3 : Einstein a coeffici ar i
sorption, Itis a constant che - coethicient for induc
abso l1‘.dmnsmmchdraclensucof the atom and re resents th ) ,Ed
of the energy states El and E_. presents the properties

(iiy The probability that a spontaneoys transition is given by

(PnJ\p =Ay
where A, 1s‘a constant known as Einstein coefficient for Spontaneous emission,
A,, 18 @ constant characteristic of the atom and is known as the radiative rate

1 isthe life time of the upper
AZI

state.

state against spontaneous decay to the lower

(iii) The probability that a stimulated transition oceurs is given by
(PZI)\;t O U(U)
or (PBI )st = BZLU(U)

where B, is the constant of proportionality known as the Einstein coefficient

for stimulated emission. It is a constant characteristic of the atom and represents
the properties of the states E and E,.

Note: The spontaneous transition from the state E 1o E, is forbidden by quantum
mechanics A | =0.

Relation between Einstein coefficients

Consider an assembly of atoms in thermal equilibrium at temperature with radia-
tion of frequency v and energy density u(v).LetN, and N, be the number of atoms

in energy levels 1 and 2 respectively at any instant. At thermal equilibrium N and
N, in their levels must remain constant. The condition required that the number of

transitions from E, to E, must be equal to the number of transitions from E to E, .
Thus

The number of atoms absorbing photons '
per second per unit volume = The number of atoms emitting photons
per second per unit volume

The number of atoms absorbing photons

per second per unit volume = B,,u(v)N,

The number of atoms emitting photons

per second per unit volume = A, N,+B,u(v)N,
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h. we have

So in equilibrinn
_ AN, +Byu(w)N;

B,u(v)N,

or B,:u(ulf“«llHB:]u(U)N2 = A, N;

u(u)(B,; N, — B N,)= A, N,

u(v)= B“ NI ~ quNf
) AliNl
u(v)=
N
B ——B;
N,
Ay
) B12
J) =
o N, By
N2 BIZ
According to Boltzmann’s distribution law, we have
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e According to Planck's radiation formula we have
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i Comparing eqns (1) and (2) we get
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y By
I Bll

or B«’-‘ = Ba:

Equations 3 and 4 are known as Einsteins relations

uation (3) says th: 5 eatt e
Eq. . ( )' ys that the ratio of coefficients of spontaneous emission to the
coefficient of stimulated EMISSion is proportional to o

4 )

. It means that the i
. . : e probabil-
ity of spontaneous emission dominates over stimul

o ated emission more and more as
the energy difference between two levels (hu) increases. This is why it is difficul
to achieve laser action in higher frequency ranges such as X-rays i =
Equation lj4_} says that the coefficients for both absorption u-nd stimulated emis-
sion are equal. 1.e., the probability of absorption transition is same as the 11'rt\btllﬁili£\-‘
of stimulated emission transition. This implies that when an atom with two enerv.\
levels is placed in a radiation field, the probability for an upward (absorption) lm;-
sition 1s equal to the probability for a downward (stimulated emission) transition.

Light amplification

We found that when medium is in thermal equilibrium spontaneous emission
dominates the stimulated emission. Light amplification requires that stiimulated
emission occur almost exclusively. In practice, absorption and spontaneous emission
always occur together with stimulated emission. The laser operation is achieved
when stimulated emission exceeds the other two processes extensively, we shall see
under what conditions this criterion is met with.

Condition for stimulated transition to dominate over both spontaneous and
absorption transition

For the laser action to take place the existence of stimulated emission is essential.
In practice, the absorption and spontaneous emissions always occur together with
stimulated emission. Here we shall see under what conditions the number of stimu-
lated emissions can be made larger than the other two processes. The ratio of stimu-
lated transitions to spontaneous transitions is given by
Stimulated transitions By u(u)N,

Spontaneous transitions AN,

_ B,,u(v)
1.e., e, ~ =

l A:&
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: +:on to be large R, must be large i.e., ELL "
For the stimulated emission transitio A, ust
: imulated transitions to absarne:
be laree and u(v) must be large. The ratio of stimulated 112 to absorptio,
dl & o =

transitions is given by
Stimulated transitions

2~ Absorption trnasitions

5 B,u(N, N,
27 B,u(u)N, N,

For the stimulated transition to be large R, must be large (R, > 1)

N
ie., e

or N, >N,
i.e., the population N, of the excited state should be larger than the population N,
of the lower energy level.

The above discussion shows that to make stimulated transitions overwhelm the

other transitions, three conditions are to be satisfied.
(i) The population at excited level should be greater than at the lower energy level

. . B,
(i) The ratio —= should be large.

21
(iii) The radiation density u(v) present in the medium must be high.

When these three conditions are satisfied a medium amplifies light.

Opr next aim is to see how to achieve the three above said conditions. The first
condition (N, > N,) can be met by a mechanism called population inversion. The

. - B, .
second condition (—L is largerJ is achieved by choosing a metastable energy level
21

as the higher energy level. This is because, spontaneous transitions are forbidden

: o B :
from metastable state, then —2 wil] be larger. To achieve the third condition
21
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¢ (WO parallcl mirrors. The radiation is reflected
(u(U)) reaches 0 a very high value. Now we will se “Sy times 1il] the |

; € 1he A
in detail- the three above g

Populaﬁ"“ inversion

When an atomic system is in thermg} equilibri
. - i s s lum, photon absornti
jon processes take pl?lce side by side. Since N > N abxpo : dbbor;_mon and emis-
4ction tO take place stimulated emission must dormso:. tPtion dominaes. For Jaser

dominate o

o ettt ool o 0 wver th /

more stimulated emission than absorption, 3 majority of dto"- Othl.:r two. To have
dloms should be at the

higher energy level than at the lower Jeye]. Through som ;
he number of atoms in the excited level very muuch.ore;emf:}ihdn
level. i.€., N, > N,. This is a non—equilibriu}n condiiion a;d 'asnkl
population conditipn. This state of the medium is know ;
sion. Thus population inversion is the non-equilibrium state of the mater lin whi
population of the higher energy level N, exceeds the population of Lheelg\‘:re]: e\:i::zh
g

ISM we can make
hat in the ground
nown as inverted
n as the population inver-

level N . y
N, - 2 2 B N——eo—o—9o—o —F
N—&—o—o o +—E N; r—— E,

Normal distribution N, >N, Inverted state N, >N,
Figure 6.5

Extending the Boltzmann's distribution law

E;-E;) hu

N 4-(‘ = ! ——p
2 k

o e T

n that N, can ex-
[n view of this, the state of population
ve temperature State. It does not mean
This happens because the state

state and the law is not applicable to
rsion state is attained at

To this non equilibrium state of population inversion, it is see
ceed N only if the temperature were negative.
Inversion is sometimes referred to as a negat
that we can attain temperatures below absolute Z€T0.
of population inversion is a non-equilibrium S £
this. It should be borne in mind that the population 10VE
formal temperatures.
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Meta stable state i e "

Population inversion can be achieved through P”mpmfg" 51rlce thf.: hle. time of
excited atoms is 10", they release their energy through .spon.tdneo_us emission, [t
means that atoms cannot stay in the excited state for a lo_ﬂg ame:. L.€., populatiop
inversion cannot be achieved. In order to achieve population Inversion atoms haye
to wait in the excited state till a large number of atoms accumulate in that leye] In

otherwords population inversion can be achieved in an excited state which hag ,

longer life time. Such a state is called metastable state.
6 S . _
The metastable state has lifetime of the order of 10-% to 10-%s. Metastable state is

necessary for laser action.

Componentes of laser
The essential components of a laser are (i) an actaive medium (ii) a pumping

agent and (iii) an optical resonator.

Active medium
Atoms in general are characterised by a large number of energy levels. However,

all types of atoms are not suitable for laser operation. Even in a medium consisting
of different species of atoms, only a small fraction of atoms of a particular species
are suitable for stimulated emission and laser action. Those atoms which cause light
amplification are called active centres. The rest of the medium acts as host and
supports active medium. An active medium is thus a medium which, when excited,
reaches the state of population inversion, and eventually causes light amplification.

The active medium may be a solid, a liquid or a gas.

Pump

For achieving population inversion we have to transfer atoms from the lower
energy level to the upper energy level. For this energy must be supplied to the me-
dium. This process of supplying energy to the medium to achieve population inver-
sion is called pumping. There are several methods of pumping. They are optical
pumping, electrical pumping, direct conversion are some of them.

Optical pumping

In optical pumping a light source such as a flash discharge tube is used to illumi-
nate the laser medium and the photons of appropriate frequency excite the atoms (0
an upper most level. From there, they drop to the metastable upper laser level to
create the state of population inversion.

_Opucal pumping sources are flash discharge tubes, continuously operating lamps;
spark gaps or an auxillary laser is sometimes used ag the pump source
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Optical pumping js o
" PO e P gxs .'suuab ‘ dium which s i
light. Uplica Pumping is yse : parent to pump
lasers.

Electrical pumping

£as so that it cond I Ao,
‘ It conducts electricity. An electric ey -
ing through the 8as excites atoms . o o

to the excited level from where they d
: rop to the
metastable upper laser Jevel leading to population inversion. T
Direct conversion

In senuconducfor lasers, a direct conversion of electrical energy into light energy
takes place. Here it is not the atoms that are excited. It i

( s the current carriers namely
electrons and holes which are excited and a populatio

: ; . n inversion is achieved in the
Junction region. The electrons recombine with holes in the junction regions produc-
ing laser light.

Optical resonant cavity

Laser is an amplified light source. In electronics signals are amplified by an os-
cillator with positive feedback. A mechanism similar to this is required to amplify
light. In laser the active medium is the amplifying medium. This medium is con-
verted into an oscillator through feedback mechanism established by a device called
an optical resonator.

For the medium to act as an oscillator, a part of the output energy must be feed-
back into the system. Such a feedback is brought about by placing the active me-
dium between a pair of mirrors which are facing each other, The mirrors could be
either plane or curved. Such a system formed by a pair of mirrors is referred to as a
resonator.

If the mirrors used are plane, itis called a plane parallel resonator. A plane paral-
lel resonator consisting of a pair of plane mirrors facing each other. The active me-
dium is placed inside the cavity. This con-

' optical resonant cavity. ' |
R At 100% Partially

One of the mirrors is fully reflecting al?d reflecting %ﬁfm\\ S
reflects all the light that is incident on it.  irror &:ﬁ?ﬂi N o
The other mirror is made partially reflect- .

ing such that 90% of incident light is re-
flected from it and a small fraction 1S trans-

mitted through it as the laser beam. Figure 6.6 : Optical resonant cavity
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Figure 6.7 : Laser components

Lasing action
Initially, the active centres in the medium are in the ground state. Through suit-

able pumping mechanism the medium is taken into the state of population inversion.

i.e., the excited states are more populated than the ground state. Now some of the

excited atoms emit photons spontaneously in various directions. Each spontaneous
photon can trigger many stimulated transitions along the direction of its propaga-
tion. The photons stimulated travel in different directions since the cause of it travel
in different directions. Many such photons leave the medium without reinforcing
their strength, resulting in incoherent light. However the presence of mirror impose
a specific direction on photons. Photons travelling along the axis are amplified through
stimulated emission while photons emitted in any other direction will pass through
the sides of the medium and lost for ever, Thus a specific direction is selected for

further amplification.

It is due to photons back and forth reflection between the mirrors large number of
times, stimulated emission increases sharply there by achieving light amplification.

Since the mirrors provide a feedback of light into the medium, the stimulated
emission acts are sustained and the medium operates as an oscillator. At each reflec-
tion at the front mirror light is partially transmitted through it. Owing to this energy
losses from the resonator. This loss of energy and that from the medium will over
whelmed by the increase in the stimulated emission, laser oscillations buildup. Fi-
nally a steady and strong laser beam will emerge from the front mirror.

AS. the front mirrors reflect light into the medium, energy density of light u(v) is
large in the medium. See also the the figure below.




Proromies 215
Pumping energy

_{\i_{’ \ ‘ — Active medinm

i ' = Partial mirror

(€)

Figure 6.8 : Lasing action
Types of lasers

There are several ways of classifying lasers. We here prefer to classify the lasers
on the basis of the material medium used. Accordingly they are divided into four

(i) solid state lasers (ii) gas lasers (iii) liquid lasers and (iv) semiconductor diode
lasers.

Ruby laser : (A solid state laser)

Theodore Maiman of U.S.A in 1960 fabricated the first laser using a ruby crys-
tal. The ruby crystal rod is a crystal of aluminium oxide doped with chromium ions
at a concentration of about 0.05% by weight.

Construction

The ruby laser consists of a cylindrical crystal rod of ruby of about 4cm in‘length
and 0.5cm in diameter whose ends are flat and one of which is completely s_‘ﬂvered
and the other partially silvered. The silvered ends thus form a resonant Cavny.’"]flllci
ruby rod is placed inside a helical photographic flash lamp filled with xenon callec
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xenon lamp. The xenon flash
Jamp is connected to a ca-
pacitor which discharges a
few thousand joules of en-
ergy in a few milliseconds.
This results in a power out-
put of a few megawatts. The
flash lamp acts as the optical
pumping system.
Working

When the flash lamp is
switched on, xenon discharge
generates an intense burst of
white light lasting for a few

ONICS

Flash lamp

C T
[ —
Figure 6.9

milliseconds. The Cr** ions are excited to the energy bands E, and E, by the blye
and green components of white light. The energy levels in these bands have a very
small life time (= 10s) . Hence the excited Cr** ions undergo non radiative trans;-
tions and drop to the metastable state M. The metastable state is having a life time
of nearly 1000 times more than the life time of E, and E, levels. Therefore Cr’** ions
accumulate at M level. When more than half of the Cr** ion population accumulates
at E, level, the population inversion is achieved between states M and G (ground
state). A chance photon emitted spontaneously by a Cr** ions initiates a chain of

Non-radiative transition

’:" M Metastable state
MAAl Blue /
Green [~AAnal / / £
/ ] M AAl Laser emission
/ / A =6943K
/ /
/ /
B
-
w N

Fi .
gure 6,10: Energy levels and transitions in a ruby laser
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stimulated emissions by Cri#* | o | ‘
6943A travelling along the axi - Red photons of waye length

mirrors and light amplification takes
out of the front end mirror.

Helium-Neon Laser

Construction

The helium-neon laser consists of along and narrow discharge tube of length 80
cm and diameter lcm is filled with a mixture of helium and neon in the ratio 10:1,
The gas mixture of helium and neon forms the lasing medium and this mixture is
enclosed between a set of mirrors forming a resonant cavity. One of the mirrors is
completely reflecting and the other is partially reflecting so as to take out the laser
beam. The discharge tube is filled with electrodes to provide discharge in the gas.
The electrodes are connected to high voltage (10kV) power supply.

Mirror Isjjnor
“ ] )
; Helium + Neon 4 > ll;::ﬁf
’s
7 | | e o
4 To power supply -
Electrode Electrode

Figure 6.11

Working

When the power is switched on, discharge takes place inside the tube. The elec-
trons and ions produced in the process of discharge are accelera?ed towards the re-
spective electrodes. The energetic electrons collide with the helium atoms and ex-
cite them to higher energy levels F, and F,. These levels happens to be metastable
and hence they stay therefore a long time. i.e. excited gtoms cannot return to th(ei
ground level through spontaneous emission. However it can return 1o the gmunlt
level by transferring its excess energy to a neon atpm through coll.lsmn. Asha re's,;1 :
neon atoms are excited to the levels E, and E_ which have approximately t e-stz :
energy as that of F, and F, of helium. Thus the discharge througEh thz %asarT:; :t; _
continuously populétes the neon excited energy leve.ls E ’ @d E‘G-n 1; :[nwee; e
stable states. This helps to create a state of population inversio
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: wer eneray level E_ (or E,). The various 1ransi§i0ns (see figy
E,(or EJUa;ii:l: :]s? wavelengg)tlhs of 3.%9;1111.‘1.15;1111 and 6328 A . The firs:g[\:i:
correspond to infrared region while the last one c‘orresponds to r’ed light. Specifie
frequency selection may be obtained by employyng mirrors which reflect only 5
small band of frequencies about the frequency of interest.

lead to €

F, Energy transfer
J 7Y by coﬁ’ision E, : AA~Al 3.39um
F, —_— E.
1 E, 63284
1.15um E,
\ . .
[~ Excitation by collision
with atoms
Ground state Figure 6.12 Ground state

The typical power output of helium-neon lasers lie between 1 and 50 mW. The
gas lasers are more directional and more monochromatic compared to that of solid
state lasers. The gas lasers can supply continuous laser beam without the need for
elaborate cooling arrangement. One disadvantage of gas lasers is that the mirrors are
usually eroded by the gas discharge and have to be replaced.

Semiconductor laser

The first semiconductor laser was fabricated by R.N Hall and his coworkers in
1962. A semiconductor diode laser is a specially fabricated PN junction device,
which emits coherent light when forward biased.

How to achieve population inversion in semiconductors

Population inversion is required for producing stimulated emission. A semicon-
dpctor consists of electrons and holes distributed in respective energy bands. There-
fore the laser action in semiconductors involves energy bands rather than discrete
lf??cls: In other lasers population inversion is obtained by exciting electrons in spa-
tally 150]3@-at‘0ms. In semiconductors, electrons are not associated with specific
Z:';"E; b:t i lﬂjected into the conduction band from the external circuit. Therefore,

peuction band plays the role of excited level while the valence band plays the

role of on i :
ground level. Population inversion required the presence of a large concen-




Construction

A diode laser consists of a heavil
doped N type GaAs material, 2 p-
into it. A heavily Zinc doped lay
and bottom faces are metallized
through the diode. The front and
perpendicular to the plane of th
cavity. In practice there is no ne

y doped P-N junction. Starting with a heavily
region is formed on its top by diffusing Zinc atoms
er constitutes the heavily doped P-region. The top
and metal contacts are provided to pass current
rear faces are polished parallel to each other and
e junction. The polished faces serve as optical
ed to polish the faces. A pair of parallel planes

cleared at the two ends of the PN

Junction provides the required reflection to form
cavity. The two remaining sides of the diode are roughened to eliminate lasing ac-
tion in that direction. The entire structure is packed in small case which looks like
the metal case.

Working

- When the P-N junction is forward biased, electron and holes are injected into the
junction region in high concentrations. At low forward current level, the electron
hole recombination causes spontaneous emission of photons and the Junction acts as
an LED. As the forward current through the junction is increased the intensity of the

light increases linearly. However, when the current reaches a threshold value, the

carrier concentrations in the junction region will rise to a very high value. Asaresult
the junction region contains a

large concentration of electrons Current flow

within the conduction band and Metil contact Active region
simultaneously a large number \ /

of holes within the valence band. ?uorlt!i;g?:ned Laser output

Hole represent absence of elec-
trons. Thus the upper energy
level in the narrow region are
having a high electron popula-
tion while the lower energy lev-
els in the same region are vacant.
Therefore, the condition of
Population inversion is attained
In the narrow junction region.

/

Metal l
contact

Optically flat and
parallel faces

Figure 6.13
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This narrow zone in which population inversion occurs is called an inversio »
or active region. Chance recombination acts of electron and hole pairs leag to eg;f)n
sion of spontaneous photons. The spontanec{us phgtons propagating in the juncr:?s‘
plane stimulate the conduction electron to jump into the vacant states of bl on
band. This stimulated electron hole recombination produces coherent radiatiop G:X:

laser emits light at a wavelength of 9000A in IR region

Advantages of diode laser
(i) Itisoperated at low temperature
(ii) PN junction lasers are made to emit light almost anywhere in the spectrum it

UV ito IR
(iii) They are remarkably small in sizes (0.1mm long)

(iv) They have high efficiency of the order of 40%
(v) They operate at low powers

(vi) It is portable

(vii) They produce high power output

(viii) Their costs are cheap

Uses
The diode lasers are mass produced for use in optical fibre communications, in

CD players, CD-ROM drivers, optical reading, high speed laser printing etc.

YaG laser

Yttrium Aluminium Garnet (UAG) crystal is doped with neodymium (Nd) ion,
we get a laser medium. When doped in YAG, Nd* ions take the place of yttrium
fons. Doping Concentrations are typically of the order of 0.725% by weight which
corresponds to about 1.4 x 10* atoms per cubic metre. These lasers are four level
systems and therefore require lower pump energies than the ruby laser.
Construction
mnl: WEOIMYA ({;frzd lase; roq (Nd : YAG) about 10cm in length and a diameter of l?—
cal cross section ‘l’ha:;l ]iahhrf'w_ﬂaSh lamp are hou.sed in a reflector cavity of ellipti-
as they are lm atih _egft feung frogl the lamp is closely coupled to the laser rod
and parallel. The optical oci of the ellipse. The ends of the YAG rod are ground flat
practice two exlernzj : cavity may be formed by silvering the ends of the rod. In

mirrors are used as shown in figure, One mirror is made 100%

reflecting while the -
circulating air. Output mirror is about 90% reflecting. The system is cooled by
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apacitors
reflector
o ——
Power supply Resistor
Figure 6.14
Working

Itis a four level laser system. Here pumping is achieved by using an intense flash
of white light from a xenon flash lamp. It excites Nd** ions from the ground state to
the multiple energy state at E . The excited Nd* ijons quickly decay to the meta-
stable level E , releasing their excess energy to the crystal lattice. As the lower laser
level E, is located at 0.25 eV above the ground state E , it cannot be populated by
Nd’* ions through thermal transitions from the ground level. The population inver-
sion can be readily achieved between E,and E, levels. In the E, level, Nd* ions are
stimulated to emit on the main 1.064pm laser transaction and drop to the lower laser
level E,. From the level E,, Nd* ions quickly drop to the ground state again by
transferring energy to the crystal. The output power of the laser is about IkW. The
wavelength of this laser lies in the infra red. It is possible to double the frequency by
second harmonic generation. Therefore, through a harmonic generator to the sys-
tem, this laser can be made to produce green light at a wavelength of 5320A.

J Characteristics of Laser beam

| The important characteristics of a laser beam are
1) directionality

2) negligible divergence
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[ NANNANAANNNANY E/

&
\ Metastable

1.06pm Laser

E, Lower laser leve]
Energy released to
crystal -

Ground state '
Figure 6.15

3

700 nm

Optical pumping
800 nm

3) high intensity
4) high degree of coherence and
5) high degree of monochromaticity.
1) Directionality

The conventional light sources emit light in all directions. To have a beam in one
direction source is place it before a narrow slit. The laser beam emits only in one
direction called directionality.
2) Divergence

Light from conventional sources spread out in the form of spherical waves, hence
it is divergent. Laser propagates in the form of plane waves. So divergence is very
small. For example a typical He-Ne laser diverges about only 10> radian.
3) Intensity

The intensity of a conventional source of light decreases with distance. But the
intensity of laser beam is almost a constant. Laser beam is highly intense.
4) Coherence
ForC::a\zn?:?aj Sofurce of light is incoherent whereas laser light is highly coherelzll;
Coherenceplm ;ihl()ffom a sodium Jamp has a coherence length of 0.3mm where

a typical He-Ne laser is about 100m.

5) MOIIOChl‘Dmaticity

Chr()m:,:ilca .h%m HALCE ha‘s only one frequency (single wavelength) is called mon®
and the source is called monochromatic source. Conventional monochro”
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monochromatic,

Applications of laser

Lasers find applications in almost every field. They are used in mechanical work-

ing, hindustrial electronics, entertain electronics, communications, information pro-
cessing and even in wars to guide missiles to the target. Lasers are used in CD
players, laser printers, laser copiers, optical floppy discs, optical memory cards etc.
Lasers are also used in medical field. It is used as a tool for surgical operations
especially in ophthalmology and dermatology. Here we discuss onl y some of them.
(i) Welding

Welding is the process of joining two or more pieces into a single piece. If we
consider welding of two metal plates, the metal plates are held in contact at their
edges and a laser beam is made to move along the line of contact of the plates. The
laser beam heats the edges of the two plates to their metal point and causes them to
fuse together and become a single piece when the laser beam is removed. The main
advantage of the laser is that it is a contact-less process and there is no possibility of
introduction of impurities into the joint. In the process, the work pieces do not get
disturbed, as the total amount of input is very small compared to conventional weld-
ing process. The heat effected zone is relatively small because of rapid cooling.
Laser welding can be done even at a place difficult to reach. CO, lasers are used in
welding thin sheets and foils.

Drilling

The principle of drilling is the vapourisation of metal at the focus of the laser
beam. One can drill holes of diameter less than 10um, For drilling, the energy must
be supplied in such a way that rapid evaporation of material takes place without
significant radial diffusion of heat into the work piece. The vapourised material is
removed with the help of a gas jet. Pulsed ruby and neodymium lasers are com-
monly used for this. CO, lasers also used for drilling and cutting. This laser system
18 commonly used to drill and cut not only metals but also nonmetals such as ceram-
ics, plastics, cloth, paper, glass and so on.
(ii) Hardening |

Lasers are used to harden metals and other materials. Heat reatment is the pr(?—‘
cess for this. Heat treating converts the surface laygr to a crystgllme sltaula' that 13
harder and more resistance to wear. Heat treatment is common in the \l}?()‘ftl}‘g; Cal';n
automotive industry. It is used to strengthen cylinder blocks, gears, camshafts ete.
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the automobile industry. Usually CO, laser with 1kW output power is used for hea

treatment.
(iii) Electronic industry

Lasers are used in the manufacture of electronic components and integrateq it
cuits. Lasers have been used to perforate and divide silicon slices having Several
hundred circuits. They are also used for the isolation of faulty components in g lorge
integrated circuit by disconnecting the conducting paths by evaporation. TTimming
of thick and thin film resistors using lasers is a very common application.

(iv) Medical field

Surgeons use lasers to burn up brain tumours and tattoos. Lasers are also used i
the treatment of paralysis. He-Ne laser is used to stimulate the nerves in the wrists
and ankles. This is also used to stimulate the part of the brain that controls motor
responses and causes dramatic change in nerve reactions.

In ophthalmology surgeons now a days use lasers to treat severe glaucoma pa-
tients. In dermatology surgeons use lasers to remove skin irregularities, warts, pimples
and deep-red birthmarks.

Raman effect

When a beem of monochromatic light of frequency v, is incident on dust free

transparent liquids such as benzene, toluene, carbon tetra chloride etc. most of it is
transmitted without change and some of it is scattered with a pair of frequencies of

the type u=v, £ v, , where v, is the characteristic frequency of molecular system.

This kind of scattered radiation with change of frequency is called Raman scattering
and the phenomenon is called Raman effect.

Raman experiment and Raman spectrum

The original arrangement used by Raman was very simple in design. A round
bottomed glass flask was filled with dust free organic liquid and the liquid strongly
illuminated by 4358 3A line from a mercury arc lamp, suitably filtered and concen-
trated by alens. The scattered light was examined by means of a spectroscope placed
na du_‘ection perpendicular to that of the incident radiation. In the spectrum of scal-
tered light, 2 number of new lines were observed on both sides of the main line. This
1§ called the Raman spectrum. See the spectral profiles of Raman spectrum below-
Raman spectrum consists of three types of lines or bands.
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Figure 6.16: Profile of the Raman spectrum
1. Unmodified lines

This line occurs with no change in frequency from that of the illuminating line

and corresponds to frequency v, . The frequency value of this line depends on the

nature of the source used to irradiate the sample. It is a very intense line and lies

exactly at the centre of the Raman spectrum about which the other Raman lines are
symmetrically distributed.

2. Stokes lines

These corresponds to modified frequency bands which occur on the lower fre-
quency side of the spectrum. The lines on this side are more numerous and more
intense than those on the higher frequency side. These lines are indicated as v, — v,
in the figure.
3. Antistokes lines

The lines indicated by v, + v, on the left side of the figure are called antistokes
lines. They are less intense and less numerous when compared to the stokes lines.
Owing to the gradual decline in intensity of these lines as we move away from the

unmodified (v;) line in many instances it was not possible to detect as many lines
as there are stokes lines in the Raman spectrum.

The new frequencies v=v, £ v, inthe spectum of scattered radiation are called
Raman lines including v, . Another important aspect of the Raman spectrum is that
most of these new lines are strongly polarised and their spacing is symetrical about
the main line v, . |

The original Raman experiment conducted by Raman consi sted of dust free CCl,
and the monochromatic incident source used for irradiation was mercury arc lamp

with wavelength 4358.3A or wave number l?\. =0 =22,938cm ' . The Raman spec-

trum obtained on a photographic plate after a very long irradiation period, contained
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one intense band at U, = 22,93 8cm " due to Rilyleigh Scailering and a NUumber ¢
weak bands at U, + 218, v, £314, 5, £ 459, b, = 762, Yo = 790cm™". The first
three pairs of bands were easily detectable on the ph(?ngI‘ilpth plate. Only the Stokes
lines corresponding to U, — 762 and U, "7_90'31“ could be seen as very Weak
bands where their corresponding anti-stokes lines were not obf?erved. However With
the availability of laser sources, Raman spectra are now being recorded in Jegg o

time and with greater intensity bands.

Raman scattering versus Rayleigh scattering
Scattering of radiation without any change in frequency had been known earlier

to the discovery of Raman effect. In general, scatten'ng. of radiation withoyy any

change in frequency can occur from very large scatterers hke.: dl:lSt particles and such

phenomenon was called Mie scattering. However, when a similar scattering occyyg

with molecules which are smaller than the wavelength of the incident radiation, it ig

called Rayleigh scattering, after its discoverer, Lord Rayleigh. In the Raman scater.

ing a set of new discrete frequencies were observed when the scatterer was a mg)-
ecule like in Rayleigh scattering. In Rayleigh scattering no frequency change takes
place and only the existing frequencies appear. But in Raman scattering new lines of
different frequencies were observed through a single incident frequency. Thus
Rayleigh scattering always accompanies Raman scattering. Also, in the Rayleigh
scattering although there is no resultant change in the energy state of the molecular
system, the system will participate directly in the scattering act. This process causes
one photon of incident radiation to be annihilated and a photon of the same energy to
be created simultaneously. The intensity of Rayleigh lines is generally about 107 of
the intensity of the incident line, where as the intensity of the strong Raman line is

about 10~ of the intensity of Rayleigh line.

Classical theory of Raman effect

This theory leads to an understanding of the vital concept, the molecular polariz-
ability, though the theory is not fully adequate. When molecule is placed in a static
electric field it suffers some distortion, the positively charged nuclei being attracted
tm}fards the negative of the field, the electrons to the positive of the field, This sepa-
ration of charge centres causes an induced electric dipole moment to set up in the
n.lolecule and the molecule is said to be polarized. The magnitude of the induced
dipole moment (1) depends on the magnitude of the applied field (E) and on the
ease with which the molecule can be polarized. Thus we have

B =aE el
where ¢ is the polarizability of the molecule.

|
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Consider a diatomic molecule H, placed in an electric field (E) in two ways one

erpe[‘ldiCUlar (t::lld on or called equitorial) to the direction of the electric field other
one along the direction of electric field as shown in figure.

W
v

(a) (b)
Figure 6,17

It is seen that the electrons forming the bond are more easily displaced by the
field along the bond axis (figure b) than across the bond (figure a). Thus the polariz-
ability is said to be anisotropic. Experimentally it has been found that the induced
dipolemoment for a given field applied along the axis is approximately twice as
large as that induced by the same field across the axis. The fields in other directions
induce intermediate dipole moments.

Theory

When a polarized molecule is subjected to a beam of monochromatic radiation of
frequency v, the electric field experienced by each molecule varies according to the

equation
E =E; =sin2nvut

. The induced dipolemoment becomes
i, =oE =a E sin 2mot

This equation shows that the induced dipole oscillates with a frequency v. We
know that an oscillating dipole emits radiation corresponding to the frequency of
oscillation. This is the unshifted scattering of the incident radiation which gives the
explanation of Rayleigh scattering.

In addition, if the molecular system undergoes some type of periodic internal
motion, such as vibration or rotation, this may change the polarizability of the mol-
ecule periodically. Then the oscillating dipole will have superimposed upon it the
vibrational or rotational oscillation. Consider, for example, a vibration of frequency
L,;, Which changes the polarizability. We can write

o = o, +Psin2mo;t

e RS
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vhere o, is the equilibrium polarizability and B is the rate of change of p(’larizabi[
¥ = Oy, 13 :

ity with the vibration. Thus we have
i, = oE = (0, +Psin 2mo;,t) E, sin 2nut

i, =a,E, sin2not +PE; sin 27v,;, 1 sin 2mu t
Using the trigonometric relation

sinA sinB = -;j[(cos (A—-B)—cos(A+B)]

-

E
i, =0, E, sin 27mot + ?2—0605 2m(V—V It —= > 0827 (v + Lt

This equation shows that the oscillating dipole has frequency v, V=V, and

U+ U, -

If f=0 in the above equation the dipole oscillates only at the frequency of the
incident radiation. This shows that in order to have Raman lines B0. je., 3 mo-
lecular vibration must cause some change in a component of molecular polarizabj].
ity (a). This is also true for molecular rotation.

The above discussion shows that the prerequisite to the Raman effect is the
occurance of a periodic internal motion accompanied by the corresponding polariz.
ability change. The change in polarizability can either be magnitudinal or direc-
tional. Hence both the rotational and vibrational motions of the molecule may give
rise to Raman effect.

Quantum theory of Raman effect

According to quantum theory, Raman effect involves the interaction of a mol-
ecule with a beam of monochromatic radiation of frequency v, and in the process
the molecule is excited to quantised upper state.

This interaction leads to three situations.

(1) The molecule might merely deviate the photon (E = hy,) without absorbing its

energy. This would result in the appearance of the unmodified line in the scat-
tered radiation.

(if) The molecule, on the other hand, might absorb a part of the energy of the inci-
dent pho.lon. This gives rise modified Raman lines called stokes lines whose
frequencies would be less than that of the incident radiation.

(lll);‘\lso it may .ha;?pe‘n that the molecule, itself being in an excited state, imparts
some of its intrinsic €nergy to the incoming photon. This would result in the

dppearance f)f antistokes lines whose frequencies are greater than that of the
Incident radiation,

el
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[f the interaction of incident photon and the molecule is imagined as a collision
rocess, the unmodified line is a result of elastic collision and the other Raman lines
[ are due to inelastic collisions. Therefore mechanism of Raman scattering can be
h| analytically expressed by applying the principle of conservation of energy. We can

thus write.

1
E, +5mv2 +hv, = E'+~%—mv'2 +hv'

where E, and E' are the intrinsic energies and v and v' are the velocities of mol-
ecules before and after collision respectively. m is the mass of the molecule, where
as v, and v" are the frequencies of incident and scattered radiation. Since the colli-
sion does not, generally, result in any rise in temperature, it may be fairly assumed
that the kinetic energy of the molecule remains practically unaltered. In view of this,

the above equation becomes
! E, +hv, =E'+ hv'’
(E,—E) - AE

T e A

r
or v’ =v, +
where E, —E'= AE
' If E, =E' (no change in intrinsic energies due to collision process).

vf =i,

This represents the unmodified line. If E, < E' (inelastic collision resulting in
the gain of intrinsic energy of the molecule and a loss of energy of the scattered
photon).

Thus v' = UV, ——

This represents the frequencies of stokes lines.
If E, > E' (inelastic collision resulting in the loss of intrinsic energy of the mol-
ecule) E, —E'= AE

Thus v’ = v, + 50

This represents the frequencies of antistokes lines.

s—
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1. Frequency of emission or absorption radiation.

E,-E
D= i

h
Expression for relative population of atoms:

N,=Ne
Rate of absorption transition:
dN, dN,
Cdt e
R, =B,u(u)N,

o

j=% |

Rabs =

4. Rate of spontaneous transition:

= __dN, N,
. a1,
Rsp=A2!NE‘

5. Rate of stimulated transition:
R, =B, u(u)N,.
6. Relation between Einstein's coefficients

A, _ 8zhv’

W, &

(if) B, =Bu
7. Condition for population inversion
N, >N,

8. ng;dition for stimulated transition dominate over both spontaneous and absorption
radiation

i) N,>N,
B

(i) "f‘ is larger
i

(iii) u(v) mustbe high,




Protonics 231

UNIVERSITY MODEL QUESTIONS

Section A
(Answer questions in two or three sentences)

Short answer type questions

1.

What is laser? What are its properties?

Give three applications of laser.

What are Einstein coefficients? Define them.

Write down Boltzmann’s distribution law for population of energy levels and explain
the symbols?

What is population inversion? What is the condition to achieve it?

What are the conditions to be satisfied to have large stimulated emission?

What is meant by pumping? What are the different types of it?

Explain what is a metastable state.

What is an active medium?

. What are the essential components of a laser. Explain their functions.

. In He — Ne laser, lasing is through neon gas. What is then the role of helium?
. What is the reason for monochromaticity of laser beam.

. What are the advantages of diode laser?

What are the uses of diode lasers?

. Draw the labelled diagram of a ruby laser.

. Draw the labelled diagram of a He — Ne laser.

. Draw the labelled diagram of a diode laser.

. Draw the labelled diagram of a YAG laser.

. What is the active centre in a YAG laser? Explain its function.

. What is Raman effect?

. What are stokes and antistokes lines?

. Distinguish between stokes lines and antistokes lines.

- Distinguish between Raman scattering and Rayleigh scattering,
. Why stokes lines are more intense than antistokes lines?

. According to the classical theory what is the prerequisite to the Raman effect.

Section B
(Answer questions in a paragraph of about half a page to one page)

Paragraph / problem

L.
2.

Explain the quantum behaviour of light.
Explain how does light interact with matter.
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What is meant by induced absorption? Explain with a two level diagram,

What is meant by spontaneous emission? Explain with a two level diagram,

How does Einstein predicted stimulated emission of radiation.

Explain the stimulated emission of radiation with a two level diagram. .

B

6.

|
7. Show that A, =—T— and A, =0.

sp
8.  What are the characteriistics of spontaneous emission.
9. What are the characteristics of stimulated emission |
10. Spontaneous emission dominates over stimulated emission. Explain. L

11. Explain the process of light amplification.
12. Briefly explain optical pumping.

(3. Briefly explain electrical pumping.

14. How population inversion is achieved in semiconductor lasers.

15. Explain the function of optical resonator.

16. Brefly explain lasing action.

17. Explain in brief the lasing action of a laser.

18. Describe the working of solid state ruby laser.

19, Describe the working of He — Ne laser.

20. Describe the working of semiconductor laser.

21. Describe the working of YAG laser.

22. Briefly explain the experimental design of Raman effect.

23. Raman lines are symmetrically distributed about the unmodified line. Explain.
Explain the unmodified line of Raman spectrum quantum mechanically.
Explain the formation of stokes lines on the basis of quantum mechanics.

Explain the formation of antistokes lines on the basis of quantum mechanics.

Explain the quantum theory of Raman effect.

-'_me:HB_—:Ne system is capable of lasing at 3.3913um. Determine the energy difference "

"I';:’ between the upper and lower levels of this wave length. [0.365 eV] |

- neencrgy lflvel difference between two laser level is 0.21 eV. Determine the wave-

Eﬂgthnfradiation. [5.9um]

: i g:nr::%::ﬁ‘ the ruby rod contains a total of 3 x 10'° chromium ions. If laser emits
“32A wavelength, find the energy of one emitted photon and the total energy

g 8B BoRBR

31 F:S'Jaﬁf,;'f b . [1.79 eV, 8.61]
2 at rog alive alomic population of first excited state and ground state of hydrogen
A | [2.5x 107




32. Find the relative population of the two states in a ruby laser that produces a light beam
" of wavelength 6943A at 500 K. [8.7 x 107
33. The wavelength of emission is 6000A and the life time T,, is 10-s. Determine the

coefficient for stimulated emission [B,, =13x10"mkg™']
34. At what temperature are the rates of spontaneous and stimulated emission equal. As-

sume A = S5000A. [41,573 K]
35. At what wavelength are the rates of spontaneous and stimulated emission equal at tem-

perature 300K. [69.8um]
Section C
(Answer questions in about one to two pages)
Long answer type questions-Essays
What are Einstein’s coefficients? Derive a relation between them.
Describe the principle, construction and working of a ruby laser.
Explain the principle, construction and working of a He — Ne laser.
Explain the principle, construction and working of a semiconductor laser.
Explain the principle, construction and working of a YAG laser.
Explain the classical theory and quantum theory of Raman effect.
Hints to problems

1to 30 - see book work

_34 8
31, Ez—EI—ThU:ES :6.6x10 x3x10
A 3.3913um

6.6x107™ x3x10°
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o T

- 3.3913x10° x1.6x107"* =Y0sEV
32. E -E. BiC
A 1 A‘
021x1.6x10™ _ 8:62x107 x3x10° g4 5
5 .
3., g _phe  __ 662x107 x3x10*
2 ji= =: c
A 6943x10 " x1.6x10™"

Energy per pulse = Energy of one photon x Total number of atom:s.

=1.79x1.6x10™° x3x10“]

] _(Eg“'E )
34, .IiZ_=e T
N,

- A
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For the hydrogen atom E, =—13.6eV
and E, =-3.3%V
E,-E =1021eV, k=1.38x102JK"
T=27°C=300K

N
Calculate —*
N'l

35. E,-E, ~ a5 1.79eV
A
'(EI- 1
Ez_ze kTE :
NI
NG :
Find N by assuming k
1
T=500K
Ay AN

B. =
36. PaTgn o' 8mh

1
where A,, =—=10°
sp

37. B, u(v)=A,
1

i-e-n hu
ek -1

8
c_3x10 _ ¢ 10" T=2

=1

L= —=
A 5x107

Assuming hand k, find T
38. When stimulated and spontaneous emission are equal, we have

1

LU
esT —1

Putting the values of h, k and T, find v.

=]

c
Thenuse A=—,
v
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