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Introduction

Thermodynamics is the branch of physics which deals with processes mvolving
heat, work and internal energy. In other words thermodynamics deals with the trans-
formation of heat into mechanical work. Thermodynamics does not take into ac-
count the atomic constitution of matter but only deals with macroscopic properties
of the system, such as pressure, volume, temperature, internal energy, etc., that we
can observe and measure in experiments. There are mainly four laws in thermody-
namics. They are zeroth law, first law, second law and third law of thermodynamics.
The zeroth law of thermodynamics introduces the concept of temperature and ther-
modynamic equilibrium. The first law of thermodynamics gives the relation be-
tween heat and mechanical work and the second law which is the backbone of ther-
modynamics depicts the direction and manner in which heat flow takes place. The
third law of thermodynamics explains the nature of bodies in the neighbourhood of
absolute zero temperature. Finally, in short, we can say that thermodynamics is an
experimental science and based upon the general laws of nature which govern the
conversion of heat into mechanical work and vice versa. Before getting into the
chapter in detail we give definitions and brief explanations of some of the terms
used in thermodynamics such as system, surroundings, closed system, open system
and 1solated system.

System

In natural science the study of any special branch of it begins with a separation of
a restricted region of space or a finite portion of matter from its surroundings by
means of a closed surface called the boundary. The region within the arbitrary bound-
ary and on which the attention is focused is called the system. In other words any
portion of matter which is considered as separated from its surroundings is
called a system.

Surrounding

All things which are outside the system and influence its behaviour are known
as surroundings. It may be some other system.

Let a gas be filled in a cylinder fitted with a piston heated by a burner. Here the
gas is the system while the piston and the burner are the surroundings.
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the surroundings we have the following types of systems.

(i) Open system : d
A system which can exchange matter and energy with the surroun
called an open System.

For example in air compressor, air at low pressure enters and air athigh p ‘
leaves the system. i.e., there is an exchange of matter and energy with the surti

ings.
(ii) Closed system

A system which can exchange only energy with the surroundings is call 0
closed system.

For example a gas enclosed in a cylinder expands when heated and pushes‘,i
piston upward. Here the matter (gas) in the system remains constant. 3
(iii) Isolated system B

A system which is both thermally and mechanically isolated from the su
roundings is called an isolated system.

B -

A thermally isolated system means no heat flows into or out of the system.
example a system (gas) enclosed by perfectly insulating walls. Y

A mechanically isolated system means a system enclosed by perfectly rigid walls

so that its volume remains unchanged. i.e., no communication of energy with the |
surroundings. ’

n terms of quanti=
s with the surroundings or
y be adopted. One is the macro-
the microscopic point of view. :

When a system has been chosen our next task is to describe it i
ties related to the behaviour of the system or its interaction
both. In general there are two points of view that ma
scopic point of view and the second one is

Macroscopic point of view

Macroscopic point of view conside
at large scale. 1.e., we describe a sy
position, volume, pressure,
scopic coordinates which re
COpIC coordinates h

They inve

r

fer to the large scale characteristics,

ave the following properties.

| Ive 1o special assumptions concerning the structure of a m
adiation or fields. -
(11) They are §

ICW |

i number needed to describe the system.
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' (iii) They can be directly experienced by our sense of perception.
(iv) They can be measured directly in the laboratory.

The study of a system under this category leads to thermodynamics. Thus ther-
modynamics is the branch of natural science that deals with the mMacroscopic proper-
ties of the system such as pressure, volume, temperature etc. Geometrical optics,
mechanics, electricity, magnetism etc. are other macroscopic branches of natural
science. The presence of temperature in our system of study distinguishes thermo-
dynamics from other macroscopic branches mentioned above.

Microscopic point of view

The microscopic point of view considers variables or characteristics of a
system at atomic level. There are large number of variables that describe the inter-
‘nal structure of the system or associated with the constituent of the system. The
study of a system under this category leads to statistical mechanics. Thus statistical
mechanics is defined as the branch of science that deals with the microscopic char-
acteristic of the system. The microscopic description of a system involves the fol-
lowing properties.
(i) Assumptions are made concerning the structure of matter, fields or radiation.
(ii) Many quantities are needed to describe the system.

(iii) They cannot be experienced by our sense of perceptions.
1v) They cannot be measured directly in the laboratory.

acroscopic versus microscopic points of view

If we study a system either by macroscopic point of view or by microscopic point
of view both yield same conclusions and results.

In macroscopic study pressure, volume temperature etc are fundamental quanti-
ties which can be measured directly in laboratories, where as in microscopic study
these are quantities that can be calculated theoretically from the microscopic behaviour
of the system. Moreover in macroscopic study of systems we cannot derive the rela-
tionship between various macroscopic quantities from fundamental principles. Ev-
erything stems from experimental observations. But in microscopic study of sys-
tems we can derive every relationship from fundamental principles. For example
PV =nRT is an experimentally proved relationship in macroscopic study. However
this relationship can be derived in the realm of microscopic study of systems from

' fundamental principles.
The above discussion shows that the microscopic point of view goes much be-
- yond the macroscopic view point. Microscopic point of view assumes several things
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about the system, sometimes it may go beyond our sense of percep.tions an-d im
nations. It assumes the structure of microscopic particles, their motion, their en
states, their interactions etc. and we develop a mathematical frame work and pre
about our measurable quantities and also derive the relation between various q
tities involved in the study. Inspite of all these the final justification should com
from the macroscopic point of view, where everything is measurable.

Scope of thermodynamics

We found that in dealing a system by macroscopic point of view, it constitutes a
description of the large scale characteristic of a system by means of a few of 1ts
measurable quantities suggested by our sensory perceptions i.e., the description of a
system by some of the observable quantities associated with the system is the start-
ing point of all investigations in all branches of natural science. For example, we"
want to deal with the mechanics of a ri gid body. Obviously we go for macroscopic
point of view. Firstly we find out some observable variables (coordinates) such as
position, centre of mass with respect to time: clubbing of position and time we get
another observable quantity velocity. The centre of mass, position, time, velocity ;
etc. are some of the measurable quantities called mechanical coordinates. These |
coordinates enable us determine potential energy and kinetic energy of the rigid
body. i.e., it is the purpose of mechanics to find out the relations between different
mechanical coordinates which are consi€tent with Newton's laws of motion.

In thermodynamics the situation is slightly different. Here we take observable 1
variables associated with the internal state of the system as pressure, volume, tem-
perature etc. These observable quantities called thermodynamic coordinates. These -
coordinates enable us to determine the internal energy of the system. i.e., it is the j’
purpose of thermodynamics to find out the relations between different thermody-
namic coordinates which are consistent with the fundamental laws of thermody-

namics. Some important thermodynamic systems are air, steam, gasoline vapour
and air, a vapour in contact with its liquid etc. |
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values. If the volume is kept constant pressure may vary over a wide range of values.
This shows that for a given mass of gas and constant temperature two independent
coordinates (pressure and volume) are required to specify a thermodynamic system.
It may be noted that though pressure and volume are independent but are related
through Boyle’s law (PV = constant). In general we can say that X and Y are two
independent coordinates to specify a thermodynamic system.

Equilibrium state of a system

A state of a system in which the coordinates X and Y have definite values
that remain constant so long as the external conditions are unchanged is called
an equilibrium state. Or if there is no change in coordinates, by which the system
is specified, of the system with respect to time is called an equilibrium state.

Suppose we have two systems A (described by specifying its coordinates as X,
Y) and B described by specifying its coordinates as (X', Y’) separated by a wall.
How is, then, equilibrium of the two be defined. Obviously the equilibrium of the
systems depends upon the nature of the wall. If we use an adiabatic wall for separa-
tion an equilibrium state for system A may coexist with any equilibrium state of B
for all attainable values of the four quantities X, Y and X', Y’. See figure 1.1(a).
This is because an adiabatic wall prevents two systems from communicating each
other. Examples of adiabatic walls are thick layers of wood, concrete asbestos, felt
etc.

On the other hand if the systems are separated by a diathermic wall the values of
X, Y and X', Y' will change spontaneously until an equilibrium state of the com-
bined system is attained. Then the systems are said to be in thermal equilibrium with
each other (see figure 1.1(b)). This is because a diathermic wall allows heat transfer
from one system to another system. The most commonly used dia thermic wall is a

thin metallic sheet

o System A Syst‘em A Diathermic
Adiabatie All values of ¥, Only restricted values wall
Wal of ¥, X possible ‘/
\ System B
Syste s o 5 Only restricted values
All valuesof Y, X 2EY % possible
possible
Figure 1.1(a) Figure 1.1(b)

Zeroth law of thermodynamics A
Imagine two systems A and B separated from each other by an adiabatic wall




: ilibri se a third system C is in brought i
ObViOUSIy'A %m:hBAar:ngoItiItli':g:lgllllb;l;}:t‘hi:ggg wall. The entire Systffm (A, B and
s d(;,d by an adiabatic wall (see figure 1.2(a). After sometime A and C
C)' d Su'rr?l‘)lennnal eﬁuilibrium and B and C will also be in thermal equﬂlbnum: If the
Zc;:ilt;:tliz wall separating A and B is replaced by a diathermif: wal.l and the dl;ther-
mic wall separating C from both A and B is replac.ed by an adiabatic wall (sez 1g§1§
1.2(b), we find that there is no further change. This means that the systems A an

are also in thermal equilibrium with each other. This is known as zeroth law of
thermodynamics.

AR R RN

N AL ERMANNNNNNNNNN NN
\ N N \
\ N R \
§ S S System N
| B |
N C N \
N \ N N
N N N N
\ N R \
\ N N N
N Shaan \

System| I N System|B| System

\ B I N N |74 e N
S N ‘S S
N N) \
| ) \Q \
S N oy N

ANARARA RN R RN

If A and B are each in
thermal equilibrium with C

Figure 1.2(a)
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A and B are in thermal
equilibrium with each other

Figure 1.2(b)

Statement

Zeroth law of thermodynamics states that if two bodies A and B are each
separately in thermal equilibrium with a third body C, then A and B are also in
thermal equilibrium with each other.

Zeroth law of thermodynamics establish

es the basis for the concept of tempera-
ture.

Concept of temperature
The concept of lemperature is one of the b
of thermodynamics. As a definition,
given macroscopic object as felt b
Defining

asic tools required in the development

temperature is a measure of the hotness of 2
y the human body.

lemperature in this manner h
origin of it. But we require
[tis built upon thermal equ

as lost its s
a scientific under
ilibrium establis

gnificance, relevance and the
Standing of the concept of temperature-
hed in zeroth |

aw of thermodynamics.
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Consider a system A in the state X i+ Y, in thermal equilibrium with another sys-

tem B in the state X1, Y]. Suppose we change the state of the system Ato X, Y,

that is in thermal equilibrium with X|, Y/ of system B. Experiment shows that there
exists a set of states (X 7 X5); (X,, Y), (X, Yoy oiats etc. of system B all are in
thermal equilibrium with (X{, Y;) of system B. According to zeroth law thermody-

namics all states of A are in thermal equilibrium with one another. Now we plot a
graph between X and Y of the state. It is seen that the set of states of A lie along a
curve [ as shown in figure 1.3(a). This curve is called an isotherm. Thus isotherm is
defined as the locus of all points representing states in which a system is in
thermal equilibrium with one state of another system.

Y Y
ﬁ A
System A System B

I11

II

I

» X » X
Figure 1.3(a) Figure 1.3(b)

Isotherms of two different systems

In a similar way we can find a set of states (X[, Y)), (X}, Y), (X5, Yj).... etc.
of the system B all of which are in thermal equilibrium with one state (X, Y,) of A
and therefore in thermal equilibrium with another according to zeroth law of ther-
modynamics. Plotting a graph between X’ and y" of the state, it is seen that the set
of states of B lie along a curve called isotherm represented by [’ as shown in figu_re
1.3(b). From zeroth law, it follows that all the states on isotherm I of system A are in

thermal equilibrium with all the states on isotherm [’ of system B.
The experiment is repeated with different starting conditions (of X, Y), we get a

family of isotherms I, II, III ..... of system A and I', IT', ] of system B.

and I’ each state of set A are in thermal equilibrium with
also in thermal equilibrium with each one of set B.

Take the isotherms I
one another and




This statement indicates that the two systems have something in commop, This
commin property which makes the systems in equilibrium in themselves alsq With
one another.

We call this property temperature. Now we are in a position to define temper.
ture scientifically. The temperature of a system is a property that determingg
whether or not a system is in thermal equilibrium with other systems.

Temperature is a scalar quantity. This may be established on the .b_asi.s of zeroth
law of thermodynamics. For systems A and B to be in thermal equilibrium all the
information that is needed is that both A and B are thermal equilibrium with another
system C. We know that a scalar quantity is represented by a number, We can assign

a number to each corresponding isotherms (say I and I’ ) with the help of a set of

system C in contact with the first be
C) such as the height of the mercy
tion the device (system C) has the

aker A then some property of the device (system
ry column rises and comes to rest. Then by defini-

Ideal gas temperature

In this section our aim is to see how to measure tem

cal quantity we need Some standard ref;
énce chosen must be hig

able with time, place

perature. To measure a physi-

crence of the same kind. The standard refer-
hly precise and
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where P is the pressure of the system
of gas, V is the volume of the gas, n is
the number of moles of gas and R is
the molar gas constant. The tempera- Mercury
reservoir

ture T is the theoretical thermodynamic
temperature. In this section we show
the experiment that yields reproducible
and accurate empirical temperature @
of a real gas. It may be noted that our
governing equation is that of an ideal
gas and we are going to measure real
gas temperature (0). How to achieves
this, is the problem.

The ideal gas temperature (T) 1s
found using a constant volume gas
thermometer (Jolly’s bulb) as follows.

A schematic diagram of a constant
volume gas thermometer is shown in

S
R

Figure 1.4 : Constant volume gas thermom-
eter. Mercury reservoir is raised or lowered
so that the meniscus at the left always touches
the indicial point. Bulb pressure equals / plus
atmospheric pressure

figure 1.4.

The gas is contained in the bulb B. The bulb B is connected to a mercury column
through a capillary tube. There is a marking at the top of the mercury column called
indicial point. By adjusting the height of the reservoir (raising or lowering) until the
mercury column in M just touches the indicial point we can make the volume of the
gas always constant. The pressure in the bulb is equal to atmospheric pressure plus

the difference in height h between the two mercury columns M and M".

ie,P=P__+ pgh

To begin the experiment the bulb is inserted in a triple point cell whose tempera-
ture is assigned as 273-16 K. Adjust the height of the reservoir until the mercury in

the column M just touches the indicial point. Noting h, pressure of the gas Prp is
calculated.
Using equation (1), we can write

PoacZBI6E ~ % 7 L Tl 2)

(since volume of the gas is constant)

Remove the triple point cell

and surround bulb with unknown real gas whose
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rature (0) to be measured. As before measure the pressure inside bulb ag p

tempe
Using eq(1), we can write
PO S Ty s e[ eesn (3)
=l ives & i
1 —_——
Eq(2) © P, 273.16K
; (4)
or 8=273.16K— . _ . . e
P

Knowing P and P, 6 can be measured.

Note : The temperature of triple point (TP) of water is the standard fixed point of
thermometry. The triple point is the temperature at which the solid, liquid
and vapour phases coexist in equilibrium. A device that gives this tempera-
ture is called triple point cell.

Now we consider measuring ideal gas temperature (T) at the normal boiling point
(NBP) of water (The steam point). For this an amount of gas is introduced into bulb

B and measure P, when the bulb is inserted in the triple point cell. Suppose that

Ppp is equal to 120kPa. Keeping volume constant carry out the following proce-

dure.

(i) Surround the bulb B with steam at standard atmospheric pressure, measure the
gas pressure Py,, as described earlier, then calculate the real gas temperature

0 using equation 4.

. P e
ie., O(Pygp) =273.16K T;%

(1) Remove some of the gas from the bulb B so that P, has a smaller value (say 60

P sasure the new v s AF " sl o
kPa). Measure the new value of Pypp and calculate new value of ¢,

, Pigp
O(Pygp) = 273.16K —NBP.
60
CXperiment by reducing the
incasure corresponding ¢ value.

(i1i) Repeat the :
I amount of gas step by step. Each time




(iv) Plot a graph between O(Pypp) against P, . Extra
polate the resulting curve to the axis where

Prp =0
From the graph we can measure
LT 0Pp)

The whole experiment was repeated for three
different gases, each time measured O(P) for the
normal point of water. (see figure)

It is seen that although the readings of a constant

B(PNBP)
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A 6(p)

-

PTP (in kPa)

Figure 1.5

volume gas thermometer depend upon the nature of the gas at ordinary values of

Pygp » all gases indicate the same pressure as Py, = 0. Therefore we define the ideal

gas temperature T by the equation

F=273-16K. . Lt i constant V.
Prp—0 PTP
P)
t
Nl
H:
0=373.124K He

P inkPa

Figure 1.6

The above experiment shows that the behaviour of the real gases approaches the

behaviour of ideal gas in limiting condition

1.e., @ =T when P’['l) —0.
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This is our familiar statement that at low pressure and high temperature (NBP) g

real gases behave like ideal gases.

Helium is the most useful gas for thermometric purposes for two reasons. At high
temperatures helium does not diffuse, where as hydrogen does. The second reason is
that helium becomes liquid at a temperature lower than any other gas so that it is
feasible to measure very low temperature than any other gas thermometers.

Thermodynamic equilibrium

Suppose we want to conduct experiments on a thermodynamic system. Firstly
identify two thermodynamic variables for the complete description of the macro-
scopic system. When these variables change either spontaneously or by outside in-
fluence the system is said to undergo change of state. When the system is not influ-
enced in any way by its surroundings it is said to be an isolated system. This systems
are of little use and importance. Usually we deal with systems influenced by its
surroundings. The surroundings may exert forces on the system or provide exchange
of energy. It is due to this interaction between the system and the surroundings the
state of the system changes.

When there is no resultant force or torque in the interior of the system and
also none between the system and its surroundings, the system is said to be in a
state of mechanical equilibrium when these conditions are not satisfied the system
undergoes change of state.

When a system is in mechanical equilibrium does not tend to undergo a
spontaneous change of internal structure such as chemical reaction or a trans-
fer of matter from one part of the system to the surroundings, then the system
is said to be in chemical equilibrium.

When a system is not in chemical equilibrium, it will undergo change of state.

When a system is in mechanical and chemical equilibrium, if it does not
exchange heat between the system and the surroundings, the system is said to
be in thermal equilibrium.

In thermal equilibrium all parts of the system are at the same temperature and
also thc surroundings temperature. When these conditions are not satisfied the Sys-
tem will undergo change of state.

“_"hen- a syster.n is mechanical, chemical and thermal equilibriums, the sys-
tem is said to be in thermodynamic equilibrium.

W a evetem ic ami Tk :
| hcn dh.‘s} Stem is n thermodynamic equilibrium the variables (coordinates) rep-
> » ¥ 3 22 > - g & -
resenting the state of the system will not undergo change with respect to time.
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It may be noted that thermodynamics does not d
time. However time factor plays a crucial role whe
gases, hydrodynamics, chemical kinetics etc.

eal with any problem involving
n we deal with kinetic theory of

When any one of the three conditions required for a system to be in thermo-

dynamic equilibrium is not satisfied, the system is said to be in non equilibrium
state,

In non-equilibrium states as the thermodynamic variables change, the state of the
system cannot be described by thermodynamic variables. Thus we are helpless in

dealing with such systems partially. However approximation methods are available
to deal with non-equilibrium states.

Equation of state

For simplicity consider a closed system. A system (gas) enclosed in a cylinder
provided with a piston. This being a closed system the matter (gas) remains constant
and can exchange energy with the surroundings, we can very well measure the pres-
sure P, the volume V and the temperature T of the system. If we fix P and V. auto-
matically T will be fixed by nature. If V and T are fixed, the pressure P assumes a
constant value. It shows among the three variables only two are independent vari-
ables. This implies that there exists an equation of equilibrium which connects the
thermodynamic variables (coordinates). This is called an equation of state. Thus,
equation of state is a relation connecting between thermodynamical coordi-
nates of the system in thermodynamic equilibrium.

Equation of state in thermodynamics cannot be deducted theoretically but must
come from experimental results. Thus the equation of state is valid only within the
range of values measured experimentally. Beyond this range some other equation of
state may come into play.

For example, the equation of state for an ideal gas is

PV = nRT

This is valid only at very low pressure.

At high pressures, the equation of state is Vander Waals equation given by
n’a

2

P+

(V—nb) = nRT

Where a and b are constants for a given gas but differ from gas to gas. Tl‘.ne con-
stant a takes into account particles interaction and b takes into account the finite side
of the particles.
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In both these equations of state three dynamical variablf:s ?re use((ll.tThls .docs Not
mean that these three variables (P, V, T) are the only variables uSse ho -W”\‘? equa.
tion of state. For example the relationship betwe_en the entropy ( ): tt) e internal ey,
ergy (U) and pressure (P) is as good as an equation of stfite as the a ove. .tWU equa.
tions. Therefore any two out of three can be chosen as mde.pendent var lil.b]cg,', i-hc
third being a dependent variable. In general the three cpordmates chosen is desig.
nated as X, Y and Z. Such ZYZ systems will be called simple systems. PVT systen,

is an important type of simple system.

Hydrostatic systems
Any isotropic system of constant mass and constant composition that exerts

on the surroundings a uniform hydrostatic pressure in the absence of gravita-
tion a electric and magnetic effects is called a hydrostatic system.

Hydrostatic system is divided into three categories.
(i) A pure substance : which is a single chemical compound in the form of a solid,
a liquid, a gas, a mixture of any two or a mixture of all three

(i) A homogeneous mixture of different compounds such as a mixture of inert

gases, a mixture of chemically active gases or mixture of liquids.

(iii) A hetrogeneous mixture such as mixture of gases in contact with a mixture of

different liquids.

Note : An isotropic system means showing same property in all directions. A ho-
mogeneous system is a system which is completely uniform. When a system
consists of two or more phases which are separated from one another by
definite boundary surfaces is said to be a hetrogenous system.

It has been experimentally shown that the states of thermodynamic equilibrium
of a hydrostatic system can be described in terms of three thermodynamic coordi-
nates P, V and T. i.e., every hydrostatic system is a PVT system, thus having an
equation of state.

If the system undergoes a small change of state from its initial equilibrium state
to very close equilibrium state, then all the coordinates (P, V, T) undergo slight
change.i If the change in P is very small in comparison with P and very large in
comparison with local fluctuations of pressure due to few number of molecule, then
the‘change of P may be written as a differential dP. Similarly change in V is differ-
enual’d\/ and‘that in'T is dT. i.e., every infinitesimal change incthennodynamic
é:;););dmgtes (dxffer’enna.l change) requires two conditions to be satisfied, that is the
e e‘tg;: le;Cl’y small with respect to the quantity itself and large is in comparison

¢ eliect produced by the behaviour of 3 few molecules. The reason for this 1S

—
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that P, V and T refer to macroscopic behaviour. In other words thermodynamic
system Is a collection of an extra large number of particles.

The equation of state of a system is represented by expressed by a coordinate in
terms of other two.

Thus, V=V (T, P)
Using the rule of partial differentiation, we can find the differential on both sides.

~
1.8 dV:[a—V] (nu{ﬂ) dP

-~
1

2 T oV o o : :
Where the partial derivative (F] means the infinitesimal change in V with
c
P

e : : oV
respect to infintesimal change in T, keeping P constant. Similarly (rﬁp} . Both
) T

partial derivatives have an important physical meaning.

From the definition of average coefficient of volume expansion () we have:

e - ; change in volume per unit volume
Average coefficient of expansion =

change in temperature

where the changes occur at constant pressure.

ie, p=[AY) _Ll(av
VAT ), V\AT ),

When the change is made smaller and smaller it becomes infinitesimal.

1., AV — dV and AT —dT.

1(dV
VAdT J;

Remember that f§ is a positive quantity since when T increases, V also increases
except for water between 0°C and 4°C. This is because when temperature of water
increases from 0°C to 4°C, volume decreases there by B becomes negative. This is
also true for rubber.

The unit of B is K.
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Similarly we recall the definition of average bulk modulus (B).

change in pressure

Bulk modulus = change involume per unit volume

As before, for infinitesimal changes we can write

e _y(Z)
dv/V oV

But we know that a positive change in pressure produces a negative change
volume, we introduce a negative sign to make B a positive quantity.

B=-V a—PJ
oV
Further we assume that changes occur at constant temperature. Then B is called
isothermal bulk modulus

E.C., B = HV(EJ ..... (8)
orT

In thermodynamics we always go for measuring reciprocal of isothermal bulk
modulus called isothermal compressibility denoted by kp

a1
(B)r

; 1(0oV ,
LE:, kT :—V(;;P—JT (9)

The unit of k. is (Pa)~. Equations 7 and 9 are very important in thermodynam-
ics because on the L.H.S of e

quations we have experimentally measured quantities.
From this we can calculate the change in thermodynamic coordinates on the R.H.S.
If the equation of state is

kp

P=P(T, V)
ar )y, oV ).
If T=T(P, V)

dT:(ﬂ] dP+(£T dv
), \ov),
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To see the physical meaning of ( "PJ » see example 1. The above discussion
“

shows that for any closed system the expressions for dV, dP and dT enable us to use
an equation of thermodynamic equilibrium to solve it for any coordinate in terms

(see example 2) of the other two. Since dP, dV and dT are differentials of actual
functions, they are called exact differentials.

Finally it may also be worth recalling two theorems on partial differentiation

: Ox 1
(]) (-—] ——
oy ), (0ylox),

.. [Ox) (oy _ [ox)

The negative sign on the R.H.S of theorem (ii) comes simply because of the three
coordinates only two are independent.

Intensive and extensive coordinates

We found that quantities such as pressure (P), volume (V), temperature (T) etc.
of the system which determine the state of a system are known as thermodynamical
variables. Thermodynamical variables fall into two broad categories. They are (i)
intensive variables and (ii) extensive variables.

Imagine a system in thermodynamic equilibrium to be divided into two equal
parts each with equal mass. Those properties of each half of the system that

remain the same are said to be intensive, those that are halved are called exten-
sive.

Pressure, temperature, surface tension, viscosity, emf, electric field, magnetic
etc. are intensive variables. Intensive variables are independent of mass of the sys-
tem. It is a characteristic property of the system.

Volume, length, area, charge, internal energy, number of moles etc. are extensive
variables. Extensive variables depend on the mass or size of the substance present in
the system.

Example 1

Show that
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Solution
1oV a
We have B= V[—c’;['—l, e (1)
1 (oV
= =] s et 2)
s i V[@P)T
Eq) o Bs:e 6_\1] [a\f]
Eq(2) i k [a‘r o/ &P )y
- A
1.€.; E - aT ; av :
r =
k aT )y

Used theorem (i) and (ii) of partial differentiation.
Example 2

A mass of mercury at standard atmospheric pressure and a temperature of abou
15°C is kept at constant volume. If the temperatured is raised to 25°C what will be
final pressure. B=1.81x107*K™" and k =4.01x107" (Pa)™
Solution

T, =15+273 =288K, T, =25+273 = 298K.

From example 1, we have

[aPJ o
aT ), k

” dP = ng Integrating
p. T’-

we get fdP: E de
B k .

T

Pf‘—Pi: kE(Tf__’T})

P ) 1.81){10_4)(10

e 7
T T olxig - 451x10"Pa
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Example 3

The equation of state of an ideal gas is PV = nRT. Show that the volume expansivity

; 1
B is equal to T also show that the isothermal compressibility is equal to %

Solution
We have PV-SaRT « - s ahabecs (1)
Take the derivative on both sides with respect to T, keeping pressure constant,
we get
oV
P(i J =R .. 2)
T J,

equation 2 by 1 gives
~ By definition L.H.S is

Now take the derivative equation (1) with respect, to P, keeping temperature
constant, we get

5
P[%‘E] +V=0
T

P

b p[a_vj Lins ot Lt ke 3)
oP ).

Eq(3) . i[a_VJ i

gives

Eq(l) V{oP ). nRT

o R o S o
vV oP ). nRT PV P

By definition L.H.S is Kk
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| et
i.e., 15D

Example 4

3 AT
A block of copper at a pressure of 1 atm, a volume of 100cm and a temperatyr,
of 10°C experiences a rise in temperature of 5°C and an increase 1n volume of

0.005cm’. Calculate the final pressure. B=4.95x10"K ™, k=6.17x107"*(Pa)"'

Solution
P, =10°Pa, V,=100x10""m’
T, =10+273=373K
T, =15+273=378K

V; =(100.005)x10"°m?

Our aim is to find the pressure coordinate. P is a function of V and T

P=P(T, V)
oP
dP:(i—j dT+(—8£) dv
ar Jg oV )r
-
Substituting for ((_J _B
oT ), k
"
and ((’_PJ :,_I_
oV ). kV

P I
T ey _Par ‘ =
We get dP = L dT r dV Integrating, we get

AP Tl
Pr. —R, :‘E(’]f *'I]-)—;(—‘ﬂv!

I

Substituting the values, we get
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p _p = 495x10 e | 1 100.005

: x5

6.17x10"7 " 6.17x102 100
P =P, =4.01x10" ~16.21x 10" xIn1.00005
P —P, =4.01x10" -16.21x10" x4.99x 10"
P —P, =4.01x10" —80.89x10°

P, —1 atm =401 atm —80.89 atm

P. —1 atm =320.11atm

P; =321.11atm

Work

Whenever a system undergoes a displacement under the action of a constant force,
work is said to be done. Work is measured as the product of force and the compo-
nent of displacement parallel to the force

1.e., W=F-S=Fscos0

If the force is variable work done is given by W = j‘fi G

If a system as a whole exterts a force (F) on the surroundings and a displacement

(S) takes place, depending upon the direction of E and S, the work done is either
by the system or on the system is called external work done. i.e., external work done
is due to interaction between the system and the surroundings. For example a gas is
enclosed in a cylinder provided with a piston. When the gas expands, it is imparting
motion to the piston thereby doing work on its surroundings (piston). The work
done by any part of the system on any other part is called internal work. It is due to
interaction between the constituents (atom or molecules) of the system. Internal
work done cannot be discussed in macroscopic thermodynomics. Thus in this chap-
ter whenever we say work it implies external work.

When a system does external work parameters required to find the work done can
be expressed in terms of thermodynamical variables specifying the system.
Sign convention of work

In mechanics when a force exerts on a mechanical system in the same direction
of displacement, work is positive and work is said to be done on the system. In this
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reases. For thermodynamics to be consistent with me.
Thus work is done on the system, work jg
work is considered ag

case energy of the system inc
chanics, we adopt the same convention.
considered as positive. When work 18 done by the system,

negative.

Quasi static process
When a system is in thermodynamic equilibrium and the surroundings are kept

unchanged, no motion will take place and no work will be done. If some how there
is an unbalanced force acting on the system, the mechanical equilibrium, thermal
equilibrium and chemical equilibrium may upset, then the system will be no longer
in thermodynamic equilibrium. This system will pass through non-equilibrium states,
then the system will not be described by thermodynamic variables. To overcome
this we imagine an ideal situation in which the unbalanced force is infinitesimal and
the process proceeds infinitesimally slowly. A process performed in this ideal way
said to be quasi-static. During a quasi-static process, the system is at all times infini-
tesimally close to a state of thermodynamic equilibrium.

Thus a quasi-static process is a process in which a system successively changes
from one equilibrium state to the next equilibrium state differing only infini-
tesimally from the first one.

A quasi-static process is an ideal concept which can never be realised in the labo-
ratory. However in the laboratory many processes approach quasi-static process with
no significant error.

The introduction of the concept of quasi-static processes enable us to calculate
the work done. In thermodynamics we deal with only reversible quasistatic pro-
cesses only in which dissipative forces are ignored. It may be noted that all pro-
cesses that we deal in thermodynamics are quasi-static.

Depending upon the conditions imposed on a given hydrostatic system it can
undergo several types of processes such as quasi-static isothermal expansion or com-
pressio_n of an ideal gas, quastic-static increase of pressure on a solid, quasi-static
expansion or compression of a gas in an adiabatic container, quasi-static isobaric
process, .quasi-static isochoric process, quasi-static cyclic process and quasi-static
non cyclic process.

(i) Quasi-static isothermal process

A process in which pressure and volume change at constant temperature is known
as )
[h:: :iothermal process. In such a process there is always heat transaction between
system and surroundings so that the System must be in very good thermal contact

with surroundings. This me
gs. ans that the wall of the container is on-
Buclor (Ratheiuic) ntainer is a perfect heat ¢




Zeroth law and first law of Thermodynamics 27

As an example let us consider a perfect gas en-
closed 1n a cylinder of diathermic wall and PT
equipped with a smooth piston. When the gas is
compressed by pushing the piston inward, the work
is done on the gas and its temperature increases. In
order to keep the temperature constant, heat,
equivalent to the work done, must flow out the sys-
tem. Similarly during an expansion process heat
flows from surroundings to the system

<Y

The equation of state for isothermal processes Figure 1.7
of a perfect gas is,

PV = constant

A graph between volume and pressure in an isothermal process is known as an
isothermal.

Since the internal energy of a perfect gas depends only on temperature, the inter-
nal energy of a perfect gas remains constant in an isothermal process.

(ii) Quasi-static adiabatic process

In adiabatic process, the system is isolated from the surroundings so that heat
neither enters nor leaves the system. In this process pressure, volume and tempera-
ture may change. Obviously the system must be enclosed in a perfect insulator of
heat.

Now let us consider a perfect gas enclosed in cylinder fitted with a piston. Both
the cylinder and piston are made of perfect insulators of heat. Any change in the
pressure and volume is always accompanied by a temperature change, since the
work done in this case is converted as internal energy of the system.

Since perfect thermal isolation is not possible the quick and sudden processes are
considered as adiabatic processes. The bursting of an inflated motor car tyre, the
compression and expansion of the working substance during the compression stroke
and power stroke respectively of a petrol engine or a diesel engine etc. are examples
of adiabatic process. Since pressure, volume and temperature change in an adiabatic
process we cannot draw a graph in a single plane. But we can show that at any point
the adiabatic curve has a steeper negative slope than does an isothermal curve at the
same point.

The equation of state for adiabatic processes of a perfect gas is

PV = constant

. .
where 7y is the ratio of specific heats 1.e. ¥ = C—i_
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(iii) Quasi-static isobaric process

A process taking place at constant pressure 18
known as an isobaric process. P T

For example isobaric process occurs in the
boiler super heater where the heat of the existing
steam is increased without increasing its associ-
ated pressure.

One such process is represented by a line AB
in the P-V diagram given below. 5
(iv) Quasi-static isochoric process

A process taking place at constant volume is

called an isochoric process. It is also called as

isometric process. For example addition or re-
moval of heat from a system (gas) enclosed in a sealed non-deformation container.
The ideal ottocycle is another example of isochoric process. When it is assumed that
the burning of the gasoline-air mixture in an internal combustion engine car is in-
stantaneous, there is an increase in tempera-

ture and pressure of the gas inside the cylin-

der while the volume remains constant. One PT
such process is represented by the line BC in
the P-V diagram given above. >

(v) Quasi-static cyclic process

Cyclic process is a process in which a sys-
tem is taken from an initial state A (P, V,, T,)
to a succession of states but is always brought
back to the initial state. Such a process is rep-
resented by a closed path in a P-V diagram
(see figure 1.9).

It is obvious that there is no change in the state of the system at the end of a cycle
in such a process. i.e. P, V, T, U, S, etc. remain unchanged at the end of a cycle. The
internal energy U of the system depends only on the state of the system; so in 2
cyclic process the net change of internal energy dU will be equal to zero. i.e., dU = 0.

>

)
%
]
we)

Y

Figure 1.8

)
9

Figure 1.9 ¥

The carnot cycle is the best example for a cyclic process. A devise that converts
heat into mechanical work continuously by performing cyclic processes is known as
a heat engine.
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(vi) Quasi-static non-cyclic process

A thermodynamic system which undergoes series of changes and does not come
back to the original state is called as non-cyclic process.

A gas enclosed in a cylinder is compressed by a piston, if the piston doesnot
come back to the original position, we can say gas undergoes a non-cyclic process.

Work in changing the volume of hydrostatic system

Consider a system (gas) enclosed in a cylinder provided with a frictionless pis-
ton. Let A be the area of cross section of the cylinder. Let P be the pressure exerted
by the system on the piston, therefore the corresponding force is PA. The surround-
ings also extert an opposing force on the piston. Let F be the force act on the system
from the surroundings. The force F is slightly different from the force PA of the
system. Under this condition the piston moves through an infinitesimal distance dx
during compression. See figure below. The surroundings perform an infinitesimal

work on the system (positive) denoted by dW (d-bar W)

L e s
§
F N
— IS LIS ISP N ,/»
N 7
’§ /]
N i /
2 T 72
>
dx
Figure 1.10

Thus dW = Fdx = PAdx

Adx =dV infinitesimal change in volume. During compression the volume of the
system decreases, so we put a negative sign before dV, this makes dW positive.
Hence gW =-PdV

Note that here P and V denote some intermediate stage of the quasistatic process.
Integrating this we get the total work done during a finite quasistatic process in
which volume changes from V, to V..

Since we perform a quasistatic process P is the thermodynamic coordinate. But
we know that P is a function of V and T. Thus the above integration can be done
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provided T is specified. When T is specified P is only functi_on of V. When“thix is
achieved, the path of integration through successive equilibrium states is defined.

Suppose T of a quasistatic process is specified (path specified) and going from an
initial volume V, to final volume V, then work done s

Along the same path we come back from volume V to V,, then work done is
Vi
W, =— | PdV
Vi

Comparing the two we get

W;f ==Wj

fi
PV diagram

Consider a system (gas) enclosed in a cylinder with a piston. Piston is allowed to
move. Each time measure the volume (V) and pressure P of the system. Plot a graph
between pressure P along the vertical axis and volume V along the horizontal axis.
The graph so obtained is called a PV diagram. From the PV diagram we can calcu-
late the work done which is given by the area under the graph.

Vi
i.e.. Wi = 'I PdV _ Area under the graph
vV

Various PV diagrams are show in figure below.

Figure 1.11
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In figure 1.11(a), dV is positive since V> V. so the work done is negative
indicating work is done by the system,
In figure 1.11(b), dV is neg:

ative since V < V. s0 the work done is positive means
work is done on the system.

In figure 1. 11(c), when the system goes from A to B, dV is positive, work done
is negative. So work is done by the system given by the area AOBba. When the
system moves from B to A, dV is negative, work done is positive, so work is done
on the system given by BO'Aab. Since area AOBba is greater than BO'Aab network
done is negative. This is given by the area of the shaded portion so in this closed
path network is done by the system.

Note : Any two independent thermodynamic variables such as (P, V), (T, V) (P, T)

and (T, S) can be chosen to draw diagrams. In general these diagrams are
called indicator diagrams.

Hydrostatic work depends on the path

Consider a hydrostatic system taken from

state A to state B as shown in figure 1.2. Let AP

the coordinates of state A and B be (P V)

and (P,, V,) respectively where P, and V,

represent pressure and volume of state Aand 5| A L C

P, and V, that of state B. The system can -

move from A to B in different ways. We A

choose different paths such as AB, ADB and ~ P,fp---—--- D i

ACB. Our aim is to calculate the work done ; g

along these different paths which starts from I T g
A and ends at B in all cases. v, Mirdon
(a) Starting from point A, the pressure is Figure 1.12

continuously decreased from P, to P,
along the line AB so that the volume increases from V to V,,. The work done by
the system is given by

Vs 1
W, = j. PdV = Area of the trapezium ABFE = E(p' +P XV, -V))

Vi

(b) Starting from point A, the volume V, is kept constant in going from A to D, the

pressure decreases from P, to P, and then P, is kept constant from D to B. The
work done in this process (along the path ADB) is given by
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W, = Area under DBFE
_ Area of the rectangle DBFE

W, = Pz(Vz =V;)
isochoric hence work done

[Remember that along the path AD, the process 18
along AD is zero. Along the path DB, the process i isobaric and the corresponding

work done is P,(V, —V)) ]
(c) Now we start from point A, the pressure P, is kept constant in going from A to
C and then the volume V, is kept constant from C to B.

The work done along the path AC=P,(V,-V}) since the process is isobaric.
The work done along the path CB = 0 since the process along this path is isochoric.
The total work done along the path ACB,

W, = work done along AC + work done along CB

LE. W, =P,(V, —V,) = Area under ACFE

Comparing W;, W, and W, we can see that W, # W, # W;.

“‘ . - . . .

This shows that work done depends not only on the initial and final states but also
& on the intermediate states, namely on the path of integration. Thus we say that work

is a path function. Another example for path function is heat.
The expression PdV is an infinitesimal amount of work and has been represented

: by (d@W). There is however an important distinction between an infinitesimal amount
E of work and other infinitesimals, such a dP or dV. An infinitesimal amount of ther-
: modynamic work is an inexact differential that gW is not the differential of an ac-
tual function of the thermodynamic coordinates. To indicate that an infinitesimal
amount of work is not a mathematical differential of a function W and to emphasise

at all times that it is an inexact differential it is written as @W

Calculation of work for quasi-static process
Work done during quasi-static isothermal process
Consider a hydrostatic system (ideal gas) undergoes a quasi-static isothermal
b process from volume V.‘ to Vf.
| The work done is given by
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Ve
W=—j PV

v,

The equation of state for an ideal gas is

PV = nRT
. P nRT
Vv

Substituting for P we get

Vs
-\
Vi
W= —nRTI %idv (.. T is constant)
Vi
W=—pRTIn=% - i = == e (11)

(See examples 5 and 6)
Work done can also be expressed in terms of P, and P..
For isothermal process, we have

PV = constant
ie., PV.=PV

or —=—1
Now equation 11 becomes

P.
W =-nRT In— (1)
Pf

W =nRT ln%L
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ring isothermal increase of pr
ergoes an isothermal process from pre

k done d essure on a solid
ork done du
wConsider a hydrostatic system (solid) und
sure P, to P. The work done is given by

Py

s CANEE ST (13)

B

ceitis a two variable integration. Fixing the

This integral cannot be performed sin . e .
the path of integration 1s determined by

path of integration we can proceed. Here
isothermal compressibility. V is a function of Pand T

ie., V=V(P,T)

4V = (EXJ dP+(§X] dT
(’)P i aT P

Since the process is isothermal, the second term goes.

aN-= [6_\/] dpP
oP ).
or dV==kVdP = T S e e (14)
k 1 (6\/ k is the isoth ] ibili
=——| =1, e iso
viap ), ermal compressibility.

Substituting eq 14 in eq 13 we get
P

W = j PkVdP
P.

At constant temperature, k and V are almost constant, thus

B 2 B
WszJ‘PdP:kV_P_
2

pi

P

kV
W —Z—(Pf‘- 15 Pi2)

i (see examples 7 and 8)
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Work done during a quasi-static adiabatic process
Consider a hydrostatic system (ideal gas) undergoes an quasi-static adiabatic

process where system goes from initial state (P, V) to final state (P, V;). The
work done is given by

W =—|PdV
For an adiabatic process the equation of state of an ideal gas

PV’ =K, K s a constant

or P - £
VT
Vi K Vv
W= —j v =—Kj V1dV
V7
‘\."l Vl
~y+1 Vs '
W =-K v = K (Vf".'” _Vl-'r—l )
—y+1 Vv v—1

Using EVI =K and P.V! =K

We get
e [Kv —kv ™
v—1
W= _l-[p VIV TH P V"fVA—T“‘l:l
Y_l |y R R
W = _IT[vaf SRV Vi o e (16)
'Y —

(See example 9 and 10)
The above equation can also be written in terms of temperatures. For ideal gas,
the gas law can be applied to all processes.

We have PV = nRT

PV. = nRT.
and PV.=nRT,
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Thus equation 16 becomes

(See problem - 16)

Example 5

Two moles of an ideal gas kept at a constant temperature of 20°C changes its
volume from 4 litres to 1 litre. Calculate the work done.

Solution

V. =4x10°m Ne=1=10"m’
: Vi 1
Using W=-nRTIn—=-2x8.315x293In| —
V, -
=6753]
Positive work indicates that work is on the gas.

Example 6
Calculate the work done when one mole of an ideal gas expands isothermally at
27°C to double its original volume. R =8.315JK 'mol .
Solution
n=1, T=27+273=300K
V.=V, V=2V

. V,
Using W =-nRT In Vf

W=—1x8.315x300x]n%

W =-8.315x300x0.693
W=-1728.7]

Negative work indicates that work is done by the system.
Example 7

The pressure on 10 gram of solid copper is increased quasistatically and isother”
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mally at 20°C from O to 1000 atm calculate the work done. p=8.96x10"kgm™

b ]

k=7.16x10""%(Pa)™ and 1 atm =1.01x10°Pa.

Solution
m =10g=10x10"kg =10""kg
T =20+273 =293K
P, =0, P, =100x1.01x10° =1.01x10%*Pa
Using Wszv(Pf—Pf)
wzﬂ(Pf—Pf)
2p
7.16x107% x1072 >
W “? [1.01x10%)% —0]
2x8.96x10°
W ~4.076]

Positive work done indicates that work is done on the copper.
Example 8

The pressure on 100g of nickel is increased quasistatically and isothermally from
0 to 500 atm. Assuming the density and isothermal compressibility to remain con-
stant at values of 8.90 x 10° kgm™ and 6.75 x 10'2 (Pa)! respectively. Calculate the
work.

Solution
m =100g = 100x10~ =10""kg

P, =0, P, =500x1.01x10’Pa

Using W ~ %(Pﬁ -P%)

W2 (B! - P2)
2p
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Positiv

Example 9

-12 =1 -
L6.75x10 7 x10 (5,1 01x107)
2x8.90x10°

W =~9.671x107]

e work indicates that work is done on the nickel.

A diatomic ideal gas of volume 10~ °m’ at a pressure of 10°Pa undergoes quasj

static adiabatic process until the pressure drops to 2x 10°Pa and volume drop to
3.16 x 10~°m? calculate the work.

Solution

Using

y=14,V.=10"m’, V; =3.16x10m?

P, =10°Pa, P, =2x10’Pa.

W = vaf _Pivl
-1
e 2x10°x3.16x107° —10° x10~°
1.4-1
W:6.32x102—103
0.4
W =-920]

Negative work indicates that work is done by the system.

Example 10

A mono atomic ideal gas of volume 1 litre at a pressure of 8 atmospheres under-

Solution

goes quasi-static adiabatic expansion until the pressure drops to 1 atm. How much
work is done. 1 atm = 10°Pa.

Vi=10"m’, V, =?

P. =8x10°Pa, P, =10°Pa

Y= -3- (For a mono atomic gas)
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For an adiabatic process

PV/ =P,V
1
Vl ‘*(—__P'V' l
\ P
|
P \
V=2 | v,
\Pl'
8x10° )"
X1V 3 35 3
V,=| ——| 107 =(8)*3x10
10°

V, =3.48x10°m’.
Work done 1s

P, V.-PV.
y—1

W:

SR 105x3.48x1033—3x10‘x10 -
=
3

_ 3.48x10° -8x10’
K 2/3

W

W = 348 -800 _ 6785
2/3
Negative work indicates that work is done by the system.
Example 11
Calculate the work done upon expansion of one mole of a real gas quasistatically

and isothermally from 10 litres to 22.4 litres at 20°C. 2= 1.4x10°Nm*mol™" and

b=3.2x10"m “mol.
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Solution
Eor one mole of real gas equation of state 18

(P+—§T](V—b)=RT
V-

or P

\¥/

f
The work done, W = -J. PdV
\".x

~_dv

V¢ RT Vi
W :—\{ V—_—de+ \j v

Ve an
W =-RT 1n(V—b)| = |

v v,

Vo
Weeproean .

(V,=b) NV
Substituting the values, we get

(1072-3.2x107%)
(22.4x10 -3.2x107)

-1.4x109[ 3 —11]
224x1072 107

W =-2436.3 lng;g(%)— ~1.4x10°(44.64 —100)

AL

W =-8.315x293xIn

W =-2436.2 In(0.445) +1.4x10° x55.36
W =-2436.2x-0.81+77.5x10°

W =1973.3+77.5x10°

W= 77.5x10°]
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Work and heat

In the last section we found that a system can change its state by performing work
done. But there are other means of changing the state of the system that do not
involve performance of work. For example water containing in a heater with di-
athermic bottom is heated, the state of the system (water) changes. This happens
because heater is at higher temperature and water is at a lower temperature. The
temperature of a body has been assigned a meaning similar to level of a liquid. If
there is a level difference liquid flows. Similarly if there is a temperature difference
something flows. This something is called heat. In other words temperature is a
measure of heat level. For example when two differently heated bodies are put in
contact heat flows from one to the other. We know that it is because of temperature
difference between the two bodies heat flows. Heat flows from a higher temperature
to lower temperature until the two bodies attain a common temperature. Thus we
define temperature as the thermal state of a body with reference toits ability to
communicate heat to other bodies.

Heat is defined as something which flows from one body at a higher tem-
perature to the one at a lower temperature. o

In our example heat flow is the agency which changes the state of our system
(water). This agency (heat) cannot be described by as mechanical work. The above
discussion shows that work and heat are different agencies that cause the system to
changes.

Finally it may be noted that an adiabatic wall does not allow heat to pass through,
where as a diathermic wall transmits heat. In the mechanics a rigid wall does the
function of adiabatic wall in heat. Rigid wall does not allow work. Through where
as adiabatic wall does not allow heat to pass. A movable wall allows to perform
work-in mechanics where as a diathermic wall allows heat flow.

Adiabatic work

Consider a closed system surrounded by adiabatic walls. For example a gas is
enclosed in a cylinder with adiabatic walls provided with adiabatic piston. Since the
system is surrounded by adiabatic walls no heat transfers from the system to the
surroundings. However since it being a closed system it can exchange energy with
the surroundings. i.e., the system experiences the process of working. This is called
adiabatic work.

During adiabatic work the systém moves from one state to another. The system
can assume several paths to go from initial to final state. It has been experimentally
verified by several experiments that the adiabatic work is same for all paths.




1., If a closed system is caused to change from an initial state to final stat, by
adiabatic means only, then the work done is the same for all paths Connectip,
the two states,

This statement enables us to draw an important conclusion. Recall from mechz;
ics that when work done is independent of path, the force involves is said to b
conservative, then there exits an associated function called potential energy fyp,

tion

JU
po_duU

dr
U ~U, =—[F.d

In a similar way we can argue that our adiabatic work is independent of path bu
depends only on the initial state and the final state of the system then there exists a
function called internal energy function denoted by U.

l.e., W, (adiabatic) = U-U
If W is positive then U>U.

It may be noted that thermodynamic work in general is path dependent but adia-
batic work is path independent.

Internal energy function

Experiments on adiabatic work brings us two informations one is that during an
adiabatic process work done results in change of internal energy of the system. It is
nothing but law of conservation of energy. The second is that adiabatic work intro-
duces a new energy function associated with the system. The internal energy is a
function which depends on many thermodynamic variables used to describe the sys-
tem. For example a closed hydrostatic system is described by P, V and T. so U is
also a function of P, V and T. But only two variables are required to specify a sys-

tem, we keep the third one constant. In this situation W can be a function of (P, V),
(T, V) and (T, P).

U=U(T,V)
U=U(T, P)
and U=U(P, V)

Taking the differentials, of first two we get




The four partial derivatives have different physical meanings.

ot ),

/ Fd

oU
and | —
aT ), oT Jp

7

6..

give the specific heat capacity of the system at constant volume and pressure respec-

tively. This concept will be introduced soon.

/ —_—

oV

\
/T

tells us how does the internal

energy of a system change with respect to change in volume keeping temperature

constant.

(2

pressure keeping temperature constant.

J tells us how does the internal energy of a system change with change in
.

It may be noted that it is not possible to measure the internal energy of a system
but change in internal energy can be measured indirectly by measuring heat and

work.

Note : For U =U(P, V) see example 15 and problem 13.

Mathematical formulation of first law

We found that a system undergoes a change in state through the performance of
adiabatic work only. This experiment is used only to measure the change in internal
energy (eq 18). This is not the usual process carried out in laboratories. For example
gas enclosed in a cylinder provided with adiabatic walls and a adiabatic piston. The
bottom of the cylinder is provided with a diathermic boundary. When the system is
heated at the bottom with a burner, the system undergoes a change in state by ab-
sorbing heat from the burner and does diathermic work (W). This is not equal to the
adiabatic work U, — U,. Now we combine the two experiments firstly calculate U —
U, by doing adiabatic work, the system goes from state i to state f. Secondly per-
form the diathermic work such that the system goes from the same state i to the

same state f.

Combining the effect of two experiments and use of law of conservation of en-
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ergy we can define thermodynamic heat. It is defined as the difference between the
change in internal energy and diathermic work when a closed system under.
goes a process in which diathermic work is done.

Heat is denoted by Q. Thus we have

Q=U,-U-W

or Gt L=t PW e e e e (19)

This is known as the mathematical formulation of the first law of thermodynam.
ics.
Sign convention of Q

When heat enters a system Q is taken as positive and negative when heat leaves
the system. Like U and W, heat is measured in joules.

Significance of first law

(i) It provides a method for determining the change in internal energy.
(ii) It embodies the law of conservation of energy and

(iii) it provides the definition of heat. ,

We found that heating is a process by which there is an exchange of energy be-
tween the system and the surroundings because of temperature difference. Now a
fundamental question arises. What type of energy is exchanged. This can be pre-
cisely understood once the conditions of the processes are specified. Suppose we
give heat to a system at constant volume it is called isochoric heat, which results in
the transfer of internal energy. When heat is given to the system at constant pres-
sure, it is called isobaric heat the heat (energy) transferred is known as enthalpy. It
will be discussed later.

Concept of heat

Heat is the flow of energy from one system to the other. Depending upon the
conditions specified it could be either internal energy or enthalpy. During the flow
of heat thermodynamic variables cannot be assigned to the system as it goes on
changing, Thus heat cannot be expressed in terms of thermodynamic variables s
the calculation of heat depends on the path of integration. Thus heat is an inexact

differential. An infinitesimal change in heat is designated by dQ. When heat flow

stops the system attains a new state, in this context the system can be represented by
thermodynamic variables,

| !maging two systems A and B in thermal contact with each other and the compos-
ite system is surrounded by adiabatic walls.

_
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For the system A alone
U-U==Q+W
For the system B along
U;-U=Q'+W’
Adding we get
(U -U)+(U;-UD=Q+W+Q +W'
or (U +Up)-U; +UDH =(Q+Q) +(W+W)

The equation represents the composite system. L.H.S represents the change in
internal energy of the composite system. Q +Q’ is the heat transferred to the com-
posite system and W + W' is the work done for the composite system since the com-
posite system is surrounded by adiabatic walls

Q+Q'=0

Len Q=-Q

It shows that within an adiabatic boundary heat lost (or gained) by the system A
is equal to gained (or lost) by the system B. This is the basis of principle of method
of mixtures. Experiments show that in general heat is not a conserved quantity but in
an adiabatic container it is conserved.

Note : It is meaningless to say heat in a body or work in 'a body because both (Heat
and work) are transient activities.
Differential form of first law

When a thermodynamic system undergoes an infinesimal process, the thermody-
namic variables representing the system change infinitesimally. For such a process
the first law of thermodynamics can be written as

dU=ra0 e W S Al g e e (20)
This is the mathematical form of first law.

For an infinitesimall quasistatic process dU and W can be expressed in terms of
thermodynamic coordinates only.

On the L.H.S of equation 20, dU is an exact differential where as on the R.H.S
both are inexact differentials. It should be noted that dU refers to a property within

the system where dQ and dQ are not related to the properties of the system rather
they refer to the surroundings of the system and the interaction between the system
and the surroundings.
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For an infinitesimal quasistatic process of a hydrostatic system, we hay,

dW =-PdV.
' Now equation 20 becomes
i dU = dQ —PdV
| or QO—qUEPAV © . 0 e 1)

it | Heat capacity and its measurements
) According to first law of thermodynamics we have
U,-U.=Q+W

This shows that internal energy can be changed either by heat (Q) or work (W),
As it is easier to produce heat rather than work, we go with measuring U, — U. by
supplying heat. Our aim is to measure the capability of a system to store internal
energy by supplying heat to the system. Actually we are measuring internal energy
capacity. Unfortunately this term had been miscoined as heat capacity.

Let AQ be the heat given to a system and the corresponding change in tempera-
ture is AT. Then, the average heat capacity is defined as

Average heat capacity = %Q_

In the limiting condition AQ — 0 and AT — 0, the ratio approaches a limiting
value known as heat capacity denoted by C

i 8. :@
. dT
Its unit is JK.

Remember that R.H.S is not a derivative of a function but simply a ratio.

The value of C depends on mass of the system because for a given dQ,dT will be
will be different for different masses of the same system. In other words C is an

exentensive quantity. To make it intensive, we divide by mass m. Then the heal
capacity is named as specific heat capacity denoted by ¢

1 dQ
C=——2X =23
m dT (@3)

Its unit is Jkg 'K

The adjective specific means per unit mass.

When specific heats of different substances are compared, no regularities found
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to occur. However when the heat capacities are standardised to the same amount of
substance called a mole, wonderful regularities found to occur.

The heat capacity per unit mole is called molar heat capacity. It is also denoted
by c.

ie., c=C_1(dQ e (24)
n n\dT
Its unit is Jmol "K',
The heat capacity can be negative, zero, positive or infinite depending upon the
process of the system undergoes during heat transfer.

We have C = gg
dT

For example, if a gas is compressed, it temperature rises, without supply any heat
toit.1.e., dQ =0
C=—t =0
dT
On the other hand if a gas is allowed to expand without any rise in temperature
i.e., dT =0, then

L 4Qs
S LS

Thus in order to have a unique value of heat capacity of a hydrostatic system
either by keeping pressure constant or volume constant.

&

o0

Heat capacity at constant pressure is written as

o2
dT ),

In general C, is a function of P and T.

Heat capacity at constant volume is written as

()
dT ),

In general C, is a function of V and T.
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Measurement of heat capacity

Measurement of heat capacities of %f)]ld'\..v . ‘
e realm of thermodynamics and statistical mechanics. In thermody Nam;,

liquids and gases plays an impory,,
role in th :
it enables us to categories the substances and also gives nthgr properties exhibje,
by them. Statistical mechanics is based on somany assumplions and the '*Ei]fdil-’.
their predictions should come from experimental measurements. Heat capacity |,
one among them.

Here we explain one of the classic methods of measurement of heat capacit,
called electric method. .

To find the heat capacity of a solid, solid is taken in the form of a block. Twe
vertical grooves are made in the block as shown in the figure below. Measure the
mass of the block after making the groove let it be m. A sensitive thermometer is
kept in one of the grooves and a heating coil is in the other groove. The heating ;|
is connected to a rheostat, an ammeter, a battery and a keep in series. A voltmeter i
connected across the coil. The whole metal block is surrounded by thick cotton,

05

V — Voltmeter

ML Ll A 9

/// T — Thermometer

T g H — Heating coil

2 Rh —Rheostat

% A — Ammeter
U i 3 HY 5 Battery

/]

[/ k- ke

C Y
%
/]

L 77 7777 77 777 7 777777777,

e 5

Ca ol

=0l

Figure 1.13

Pass a suitable constant current through the circuit. Measure the current from the
;m?eter and voltage from the voltmeter. Let it be I. Note the intial temperature 5
1 rom the thermometer, Start a stop watch every definite interval of time t not

own the thermometer reading each time as | 5

Heat delivered by the heating coil in time interaval t,—t =tis
dQ = VIt




>
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This heat will be absorbed by the metal and the temperature rises. From the defi-
nition of heat capacity we have

dQ=mc dT
Comparing the two equations, we get
mc dT =VIt
A"
or dT = —I-t
mc

Finally draw a graph between time interval on the horizontal axis and tempera-
ture difference along the vertical axis we get a straight line graph. The slope of the

: dT
graph gives —
t

ie., e
t mc
viI 1
or c=—0-
m slope

knowing V, I, m and slope, we can calculate the specific heat capacity of the solid.

Specific heat of water. The calorie

In olden days heat was measured in units of calorie (cal). One calorie is defined
as the amount of heat required to raise the temperature by 1°C in a system of one
gram of water. Later it was discovered that heat required to change the temperature
of one gram of water from 0 to 1°C was different from the heat required to go from
35° to 36° (say). Calorie was then redefined as the heat required to raise the tempera-
ture of one gram of water from 14.5 to 15.5°C. Calorie is the unit of heat and unit of
work is joule. They were considered as separate entitities. Experiments showed that
one can produce the other.

i.e., W« H
or W =JH

Where J was called as the mechanical equivalent of heat. It was defined as the
amount work done per unit mass of water in going from 14.5° to 15.5°C. The me-
chanical equivalent of heat was measured to be 4.186 J cal™'. Later it was realised
that mechanical equivalent of heat was nothing but specific heat of water, with joule
as the unit of work. Now a days we never use mechanical equivalent of heat instead
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we use specific heat of water. Then 1 calorie = 4.186 joules. The Variatiop, of i
cific heat of water with temperature is shown in figure below. !

Specific heat of water kJ/kg.K

4.22
\ /

4.21

ol <

4.19 \

4.18 Al | ]
£y 4.17 l »
I 0 10 20 30 40 50 60 70 80 90 100
u s Temperature °C

Figure 1.14 : Variation of specific heat capacity of water

Quasistatic flow of heat: Heat reservoirs

coordinates. Likewise similar situation arises when there is a finite temperature dif-
ference between the System and the surroundings. As a result a non-uniform tem-

perature and the surrounding is infinitesimally small, System changes infinitesimally
.s-'low. The flow of heat is also infinitesimally small and the calculation can be per-
formed in a Simple way in terms of thermodynamic coordinates specifyin g the sys-

To achieve 2 quasi-static flow of heat the System is put in contact with a heat
rcxcr.voir. A heat reservoir is a body having infinite heat capacity and it may absorb
Or reject any amount of heat without changing its lmperature appreciably. For ex-
ample an ice cube js thrown into ocean will not produce a drop in temperature of the
Ocean, Another €xample is atmosphere, A flow of heat from a camp fire into the air

.l : :
ill not produce a rise of temperature of the atmosphere. The ocean and atmosphere
are examples of reservoirs,
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Any system in contact with a reservoir undergoing quasi-static process is said to
be isothermal and there is no flow of heat. To describe a quasi-static flow of heat
involving a change of temperature the system has to be placed in contact succes-
sively with a series of reservoirs. Thus we imagine a series of reservoirs ranging in
temperature from T, to T, placed successively in contact with a system at constant
pressure in such a way that the difference in temperature between the system and the
reservoir with which it is in contact is infinitesimal. The flow of heat will be quasi-
static and can be calculated from the definition of heat capacity at constant pressure.

1.é., € :{%]
P

T,

or Q:ICPdT

T
If C, is constant

Q :Cp(Tr “T),

For a quasi-static isochoric process

(&)
dT J,

or Q:TIICV dT

T

If C,, is constant, Q = Cy(T.-T1.).

In terms of specific heat capacity we have
Q=m&(L-T1.)
O=me.(Ii=1)

A very familiar result to us.

Example 12
From the first law of thermodynamics show that

oU
C, = (‘—] :
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Solution

According to first law, we have
dQ =dU + PdV

1 Uis function of either (T, V) or (T, P)
! Take

- U=U(T, V)

’
i dU=(a—UJ dT+(@J dv
i ar )y OV )y

aq:(i‘i] du(‘lU) 4V +PAV
aT ), av ).

Dividing throughout by dT we get
dT \oT ), oV s dT
At constant volume, we have
(%) (2
dE g T 4

By definition L.H.S is the heat capacity at constant volume C,,

{ Cv-_-(ép_] o
oT ),

Example 13

T . -

e

A e

Assuming that internal energy of a hydrostatic system is a function of T and P,

ou
— | =C.=PVB.
show that [ BTJP s VP

Solution

U=U(T, pP) given
Taking differentials on both sides, we get




dU = (EB_UJ dT+(QE) dP
aT ), oP ).
From first law of thermodynamics, we have

dQ=dU + PdV

\ "
or dQ=(ﬂ{J dT+[Q[{) dP + PdV
ar ), oP )

Dividing throughout by dT and keep P constant

(o), 5 (),

1.8, C, =[8—UJ +P[ﬂ]
aT ), dT ),
s
sing “'V dT S
dv
HE
dT ),
ou
Thus C. :(E]p +PBV
or (G_UJ =C, -PBV
T Jp
Example 14

ou
Taking U to be a function of P and V, show that [a—P} =C
v

k
‘B
Solution
U=U(P, V) given
Taking diffentials on bothsides, we get

Zeroth law and first law of Thermodynamics
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AU ) 6U
du :(ﬂj dP-_;-(iL) dVv
oP v oV P

Using first law of thermodynamics

dQ=dU +PdV
or dQ:((:UJ aP+[ ) 4v 4 pay
oP J, oV Jp

Dividing throughout by dP and keep V constant, we get

(&)%)
dE P ) T R ©)

L.H.S can be written as

& -3L3)

)2
dP ). Y E DRSSl (1)

From the definition of k and B

_1(ov
B"V(@Tl

(3

T )
viaep ).

. __[9oV

3 ~
- gives E=—-(?X + Y
eq 2 B P ). \oT ),




k [av] [ar
B \ep). \av),

5o,

Put this in equation (1), we get

)3
&), 'B

~ 00
(QJ ¢, =
k), 'B

IMPORTANT FORMULAE

Zeroth law and first law of Thermodynantics

1. Boyle’s law: PV = constant
2. Ideal gas equation : PV =nRT
3. Expression for real gas temperature

B=273.16K£—

TP

4. Ideal gas temperature

T=273.16K 1t : B

LtPrp—0 PTP

5. Vander Waals equation of state

2

[P+ “'a) (V —nb)=nRT
v

6. The coefficient of volume expansion

1(dV
B-v(ﬁl

7. Bulk modulus and compressibility

- 5)
v )
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10.

11.

14.
1S.

Themwdyn amics

1oV
kT:-——-{————J :kT:-—l—
V\éP ), B

Theorems on partial derivative

) (§5J= :
oy ), @yl om,

(ii) (53/1[621_ L@zl

Relation between B and k
b_(e)
k \oT),
Vl

Work done during a finite quasi-static process : W= —f PdV
Vi

If the work is positive work is done on the system.

If the work is negative work is done by the system.

Work done during an quasi-static isothermal process

V
W =—nRT In—L

or W =-nRT lni
:
Work done during isothermal increase of pressure on a solid

V.
Ws—(F -P?)

. Work done during a quasi-static adiabatic process

1
W=—1oI{PRV,-pV,]
|
or Wz_n%("[}_’rl)
¥y -

W.,; (adiabatic) = U-U
First law of thermodynamics
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17

18.

19

20

21

U, -U =Q+W
dU =dQ+dW Differential form

. Heat capacity
C= d—Q JK™
dT

. Specific heat capacity
1(dQ .
c=—(—QJJkg*'K‘
m\ dT
Molar heat capacity
1
cz—[gg— Jmol K™
n\ dT

. Heat capacity at constant volume

-(3)(3)
dT ), \aT )

. Heat capacity at constant pressure

e
dT ),

. Heat in terms of C, and C,
Q=me (T, - T}
Q=mec. (T, =T,)

UNIVERSITY MODEL QUESTIONS

Section A
(Answwer questions in two or three sentences)

Short answer questions

1.
2.
3.

What does thermodynamic deal with?
Define (i) system (ii) surroundings.
Define the following

(1) open system (ii) closed system
(ii1) Isolated system.

Which are the two points of view adopted to study a system?

Zeroth law and first law of Thermodynamics
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5. What is meant by macroscopic point of‘ \:ie.\\:‘?
é- What is meant by microscopic point of view?

7.‘ What are macroscopic coordinates? |

8. What are the properties of macroscopic coordinates?

9. What are the properties involved in the microscopic description of a system?

10. Define (i) Mechanical coordinates.
(ii) Thermodynamic coordinates.
11. What is meant by equilibrium state of a system?

12. Define thermal equilibrium of a system.
13. Define thermal equilibrium of two systems separated by a diathermic wall,
14. What is an a diabatic wall? Give two examples.
15. What is a diathermic wall? Give an example.
16. State zeroth law of thermodynamics.
17. Define temperature.
18. Define triple point of water.
19. Write down the relation between real gas temperature () and thermodynamic
temperature (T).
20. What is the principle of ideal gas thermometer?
21. Draw the labelled diagram of constant volume gas thermometer.
22. What are the advantages of using helium in constant volume gas thermometer? Under

what conditions.
23. Under what conditions the ideal gas temperature and real gas temperature coincide.

24. A thermodynamic system is said to undergo change when?
25. What is meant by mechanical equilibrium of a system?
26. What is meant by chemical equilibrium of a system?
27. When a system is said to be in thermodynamic equilibrium?
28. Define a non-equilibrium state.
29. What is an equation of state?
30. What is the limitation of equation of state?
31. Write down any two equations of state and explain the symbols.
32. What is a hydrostatic system?
33. Define average
(1) coefficient of volume expansion

(i1) isothermal bulk modulus.




. What is the importance of coeffi

Zeroth law and first law of Thermodynamics
What is meant by compressibility of a system? What is its unit?

cient of volume expansion?

. What is the importance of isothermal compressibility in thermodynamics?

What are intensive and extensive variables?
Distinguish between external work done and internal work done.

Write down the sign convention of work in consistent with mechanics.
What is a quasi-static process?

. Write down an expression for work done by an hydrostatic system.
. What is a PV diagram?

. What are the indications of PV diagram?

. Define temperature.

. Define heat.

Distinguish between work and heat

. Define (i) adiabatic wall and (ii) diathermic wall.
. What is meant by adiabatic work?

. Distinguish between adiabatic work and thermodynamic work.

What is meant by internal energy of a thermodynamic system?

. What is the relation between adiabotic work and internal energy function?
. Distinguish between diathermic work and adiabatic work.
. State first law of thermodynamics.

What are the significance of first law of thermodynamics?

. Define thermodynamic heat.

. What are the sign conventions used in connection with first law of thermodynamics?
. Change of heat is an in exact differential. Justify.

. Why it is meaningless to say heat in a body or work in a body?

 Write down the differential form of first law for a quasi-static process of a hydrostatic

system.
What is meant by heat capacity?

. Define average heat capacity and heat capacity.
. Define specific heat capacity. What is its unit?
. Define molar heat capacity. What is its unit?

Define the specific heat of a gas at (i) constant pressure and (ii) constant yvolume.

. Explain why C, > C, for a gas.

. Define 1 calorie of heat.
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67.

68
69

70.

Thermodynamics

Define specific heat of water.
. Show graphical variation of specific heat of water with temperature.
. How to achieve quasi-static flow of heat?
What is a reservoir? Give two examples.
Section B
(Answer questions in a paragraph of about half a page to one page)

Paragraph / Problem type

ek S o e

From parts a and b calculate (?-KJ

What are the properties of macroscopic coordinates and microscopic system?
Distinguish between macroscopic and microscopic points of view.

How equilibrium of two separate systems (X, Y) and (X', Y') be defined?

Establish the concept of temperature on the basis of zeroth law of thermodynamics,
Explain how do you check whether or not two beakers of water are in equilibrium using
zeroth law of thermodynamics.

Explain an hydrostatic system and classify it.

Show that hydrostatic work depends on paths.

Derive an expression for work done during an isothermal process.

Derive an expression for work done during isothermal increase of pressure on a solid.

. Derive an expression for work done during quasi-static adiabatic process.

. Derive an expression for work done during quasi-static isobaric process.

. Show that work done during a quasi-static isochoric process is always zero.
. Distinguish between heat and work.
. Show that adiabatic work done is equal to the change in internal energy.

1

: oP
. For an ideal gas show that ( EJ = _W where k is the compressibility.

T

The equation of state of a Vander Waals gas is given as
(P+12](v—b) =RT. v=—v—
v vn

whre a, b and R are constants. Calculate

oP
(a) (—) P
ov )z ®) (ar %

P
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17. (a) A block of copper at a pressure of 1 atm (10°Pa) and a temperature of 5°C is kept

at constant volume. If the temperature is raised to 10°C, what will be the final
pressure (4.02 x 107Pa)
If the vessel holding the block of copper has a negligible thermal expansivity and

can w_llhstand a maximum pressure of 1000 atm, what is the heighest temperature
to which the system may be raised.

(b)

P=4.95x10"K™, k =6.17x(10"2(Pa)" (17.45°C)

—P.

18. From the first law of thermodynamics show that (r}U =ty
ov). VB

Assuming internal energy of a hydrostatic system is a function of T and P derive

ou k
— | =PVk- — =
(aPJT “ C"’B'

19.

20. Taking U to be a function of P and V show that (G_UJ = 5—%— .
P
Section C
(Answer question in about two pages)
Long answer type questions - essays
1. Explain how do you find ideal gas temperature using a constant volume gas thermometer.
2. Explain the electrical method of measuring heat capacity.
3. Starting from the quasistatic flow of heat explain how will you measure heat.

Hints to problems
oP ) (oV oP
15. Using (EJT (E]P ot ‘(El ----- (1)
oP P
(EJV =y fomexamplel .. (2)

From the definition of B, we have

1(oV
ﬁzV(?ﬁl

ovY) _
(El. =PV e e LT
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Substituting €gs 2 and 3, we get the result

16. We have (P+jz)(v—b)=RT

P +12 = RE
Vi v-b
P RT __az_
v-b v
a) Differentiate with respect to v, keeping T constant
[ap] TRl D,
ov)r (v=-b?
b) Differentiate with respect to T, keeping v constant
P) R
or), v-b
Ty
Using ar ), \av ), ov ).
RT 2a
oP S v=b)?> v
&),  R/v-b
ory T  2a(v-b)
: &), (v=b) RV’
| Usually product ab is negligibly small
gEl=" T 2a
ov Jp “v-b VR
oT) v’RT-2a(v-b)
. v ) (v—b) v’R
| oT) _v?RT-2aV
| ov Jp . (v-b) v’R
\ Inverting we get the required result.

; 17. a) Use Pf—F'—'3
‘ 1

=—(T,-T), get the result
k 1
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B_ 495x10°
k 617x10™"

(1000 —1) =80.23(T, —278)

T, =278+ il =12.45
80.23

b) =80.23x10°Pa

T, =278+12.45=290.45

T, =17.45°C
18. From example 12, we have

GQ=(@~J dT+{a—U} dV +PdV
ot )y oU ).

Dividing throughout by dT keeping P constant

oo R 0 TR o Y (B0
dr ), \er), \av);\dT), \dT};
du dVv :
: == == — [ T T e 1
fies, (5 CV+[(6V)T+P)J(€1TL (1)

From the definition
1 {6V
=42

v\iaT ),

y v ) .
Substituting for (—5] in eq (1) we get

P

o 57

(_ag] 16-Cp
V). VB

19. See example 14, only a slight change
20. See example 15, only slightly different.

or




Equation of state of a gas

re precisely gas thermometer
gas as the working substance
han mercury or platinum as the working substance.
as the working substance of a thermometer, de-
d impurity different thermometers show differ-
working substance, in the limiting case

ould see that to measure temperatu

In unit 1 we €
rence. This is because

was chosen as the standard refe
of thermometer is far superior t
When we use mercury or platinum
pending upon the quality, purity an
ent temperatures. When gas is used as the

P ;
Lt —, it approaches a value independent of the nature of the gas. To measure

Pp—0 P’I‘P

temperature we used the equation

T e T D

Prp—
TP
It shows that whatever be the gas that we used in gas thermometers measurement
es the same value. By studying the

is independent of the nature of the gas and giv
above said behaviour of the gas experimentally in a different ways, we can arrive at
the equation state of ideal gas which is the aim of this section.

Consider n moles of real gas system. Keeping its temperature constant measure
the pressure P and volume V over a wide range of values. It has been found the

: \%
relation between Pv ( U= —J and P may be expressed as a power series of the form

n

Po=A(1+BP+CP*+DP’+..) = e (2)

This series expansion is called virial expansion and the constants A,B,C D
e.tc.. are called first, second, third, fourth ... etc. virial coefficients respecti ':fel;( The '
virial _cocfﬁcients depend on the temperature and on the nature of the gas. It is-seen
experimentally that when pressure changes from 0 to 40 atm, the relatior‘l between

Puv and P is linear, hence virial expansion becomes
Pv=A(1+BP)
When pressure goes to high
e ;/g igher ranges of values large number of virial coefficients

—
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H

3.05 P

1 i 1 —» P

0 1 2 3 4
Pressure in MPa
Figure 2.1 : Variation of py with P at boiling point of water

From the graph it is seen that for all gases as the pressure approaches zero, the
product Py approaches the same value.

Now the virial expansion becomes
Lt (Pu)=A
P—0

Where all other terms goes to zero since P goes to zero. The value of Ais3.10kJ
mol™'. It shows that A is same for all gases in other words A is independent of the
nature of the gases. Now repeat the same experiment for the same four gases but at

different temperatures say one graph at triple point of water another at temperature
at solid CO,. Two graphs are given between.

Pu, kJ/mol
230 4 H,
2.20 - P
PAREE fg 02
0 T ] T S AR R
05 1.0 15 20 25 30 35 40

P, MPa
Figure 2.2 : Variation of Py with P at _triple point of water
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py . kJ/mol IR i

1,70

1.60
1.50

1.0 3.5 4.0

0 g5 1.0 1520 25
P, MPa
perature of solid CO,

Figure 2.3 : Variation of Pv with P at tem

In all three graphs we can see that the equation (3) holds good. In each graph the
is different. It is due to change in temperature. From this we can conclude

temperature and independent of the
From ideal

value of A
that the first virial coefficient A is a function

as. This was the same case with ideal gas thermometer.

nature of the g
gas temperature, we have

b}

'=273.16 Lt [P J at constant volume V.
Py =0
\ I

P

Rewriting this equation as

T=273.16 Lt <l
P20 PO
s
Lt, ,(Pv
or T =273.16 —=2=> 2
LI],”' ,u(P'n'U)
Lt(P.v)
L, P0)=—2-T e (4
P20 273.16 )

The term inside the square bracket is called molar gas constant and is denoted by R.

The value of (Pv) , . was measured to be 227.02 Jmol™’ experimentally for oxy-

gen

0°C

(Po)y _2271.02
27315 27315

Thus we get

= 8.314 Jmol 'K
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I'his is the value molar gag constant, Now equation 4 becormes

l,[(l)lf) l(l (r\)
That is we evaluated the virial coefficient A,
A=RT
\ ;
oI Lt P Rl
n

Lt PV =nRT
i.e., in the limit of low pressures, we have
T e e (6)

This is the equation state of an ideal gas. p

Putting the value of A in the virial expansion, we get
Pu=RT(1 + BP + CP? 4

Pl_)

or 1+ BP+CP? 4

This plays an important role in theoretical and experimental realm of thermody-
namics.
Note : It must be remembered that at low pressures real gases behave like ideal
gases.

Internal energy of a real gas

In this section our aim is to find the dependence of internal energy on tempera-
ture and pressure. For this we have to perform a free €xpansion experiment.
Free expansion

When a fixed mass of gas is allowed to expand without doing any external
- work under adiabatic conditions. This process is called adiabatic free expan-
sion.

For example consider a thermally insulated vessel with rigid walls divided into
two compartments with a partition wall. One compartment is filled with gas other
compartment is vacuum. If the partition is removed, the gas under goes adiabatic
free expansion in which no work is done and no heat is transferred.

According to first law of thermodynamics we have

U,-U =Q+W
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W = 0 implies Ui~ U=0
ternal energy. Then what happens,
ttemp in this was made by Joule j,

e expansion Q = 0 and
on there is no change in in
First experimcntal a

1843. He tried to measure (g{?} which is called the Joule coefficient. Joule coef.
b

In the adiabatic fre

i.e.,in free expansi
temperature and pressure.

ficient tells us how does the temperature of system change with volume during adia.

batic free expansion.

Joules experiment

Experimental arrangement consists of
and fitted with a stop cock S as shown in figure below.
higher pressure and B was perfectly evacuated. The whole system was
a water bath. The temperature of water bath was measured with a sensitive ther-
mometer. The stop-cock was opened and the gas rushed from A to B. The tempera.

ture of water bath was again measured.

two flasks A and B connected by a tube
A was filled with a gas
immersed In

Water

Figure 2.4 : Joules experimental setup

o measure the drop in temperature of the gas by measuring the

temperature of water bath. Since the pressure and volume of the gas change nor-

mally we expect a drop in temperature. But in this experiment no temperature drop

was measured. Joule could point out the draw back of his experiment and the diffr
Ity i ' ﬂ

culty in measuring ( 6\/}\, . Thus a new method was suggested, instead of measu

The idea was t

Ing a ing fi I
g a temperature change during free expansion for which the internal energy 55

constant, consi i .
ider measuring a change of internal energy at constant temperature
nody:

We know that intern 1
‘ al energy U is a functio 0 of
namic coordinates P, V and T. S =
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If U is a function of (T, V) . we have
U=1U(T, v)
Taking differentials, we get

oU )
dU = [LJ dT+(f£J dv

0T OV ),
When no temperature change (dT = 0) occurs in free expansion (dU = 0)
ou
We get — | =
o 2 (M) e Bt

It shows that U is independant of volume
If we consider U is a function of T and P

U=U(T, P)
5 AT
Then dU:(ili) dT{f—U} dp
ar/? oP 1

When there is no temperature change (dT = 0) occurs in free expansion in which

dU = 0, we get
(G_UJ O S ey S (9)
oP

It shows that U is independent of pressure. Clubbing the statements of the two
equations 8 and 9 U is independent of V and P. Therefore U is a function of T only.

Now we have to conduct an experiment to prove that U is a function of tempera-
ture only. In this experiment we want to verify that

[a_U o [a_lj.j =() at constant temperature.
ov ), \oP).

Experimental setup

This experiment was firstly conducted by Rossini and Frandsen in 1932 after 90
years of Joules experiment.

The experimental arrangement consists of a bottle B containing n moles of gas at
pressure P. The gas communicates with the atmosphere through a long coil wrapped
around the bottle as shown in figure. The whole apparatus is immersed in water bath
whose temperature is maintained constant at exactly the same value as that of the

surroundings.
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T Quter

g e - - L——Electric heater

Valve

i
I
ERER A

Platinum resis-
tance thermometer

//'/,_'/////’:f'///"(/, )

" - g 2 -~ o Ot f ) ;‘Hl‘_
Figure 2.5 : Apparatus for measuring (Su/cP), of a gas. (F.D. Rossini and M Frandsen)

To begin the experiment the valve attached to the hottle is opened slightly. Th

gas will gscape o air slow i'\ lhIUU“h the coil. At the same Ume the “‘”]!"““”“r&' Ol

the gas, the bottle, the coils and the water is maintained constant t by an electr

heating coil immersed in the water. The electrical energy supplied to the water i

equal to the heat Q absorbed by the gas during the exp: unsion. The work done by th
gas is (whole gas is leaked out)

W =-PdV
1.£., W=~ P(nv,-V)
where P is the atmospheric pressure, U, 1S molar volume at atmospheric pressurx
and temperature and V is the volume of the bottle.

If u(P. T) is the molar energy at pressure P and temperature T and if u(P, T)is th

mol ernal energy at atmospheric pressure and the same temperature. Usmu 1rs
law of h rmodynamics
U -U=Q+W
LL. nu(P, T)-nu(P,, T)=Q+W
oF u(P, T) U(P_T}—LTW

n

T'he change in 2 4 5
nternal energy Ay for various values of P are measured. A grép
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is plotted between Ay on the vertical axis and P on the horizontal axis, a straight
line graph gas obtained as shown in figure below. Since u(P,, T) is a constant, the

TP) , at any value of P. Within the pres-

slope of the resulting curve is equal to [@u

or )+

)

» chanee il ) < .(wll . d
sure change of 1 to 40 standard atmospheres the slope | — | is the same for all
OP )
‘ou
pressures. It shows that L$ ) 18 independent of the pressure, depending only on
oP ),
I

[ du : o A . £m - EL : ;
the temperature. Thus, we have L “)} =f(T) . This implies that u is a function of
iy

(
both pressure and temperature. The experiments were repeated for various gas such

as air, oxygen, and mixtures of oxygen and carbondioxide they obtained the same
result.

i e 1), 15 20 25 30 35 40 45
0

» P
T \ir atR8°C
Fy o\\
100 \.%
O
. 200 £ w -
sl B

P 4 =—6.08 J/mol atm

- 300

- 400

4

u(P, T)—u(P,, T), J/mol

Figure 2.6 : Dependence of change of molar internal energy of a real gas on pres-
sure, where P is atmospheric pressure

They also found no pressure or temperature range in which [a—U) =0
T

oU
oP ).

o U [8U [ap]
writin e | — | mo—
e v )\ ), \av ),

1e.,

#0
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: oP
For free expansion at constant temperature (“OV] 4 and we proved thy
. )

P Jx
ouU \ ou

The above equation shows that | — | #0. For a real gas (———) #0 and
oV )z oP J;

oU
[_a_q} 40 For a perfect gas we will prove that (QH } =02 (EV) P
: P ). Jr

oV
a real gas behaves like an ideal gas in the limit of

At the same time we know that
pressure. In our experiment since limiting pressure is not reached the gas behaved as

such.

Ideal gas
We found that a real gas whose pressure P — 0, the equation of state assumes a

aRT. Moreover the internal energy of real gas is a function of

simple form PV =
limit of pressure, U is only a function of

pressure as well as temperature. In the
temperature only.

A real gas in the limit of pressure is called an ideal gas
Thus an ideal gas has to obey three equations

(i) PV=nRT
.. (eU) _
o (3=

(iii) and [g—gl =Q

The third equation follows from equation (ii).

i.e., (QEJ =(8_UJ [_a?_
ov ). \oP).\oV )
For an ideal gas

PV =nRT
Differentiating the above with respect to V, keeping T constant, we get
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P+V(§B =0
oV ).

[GP P
or — ===
ov ). A%
since (-ay—) =( and (B—Pj # (), we can very well write QE =0

oP ). ov ). 7 NV

T

From (ii) and iii, we can write
(iv) U=1£(T) only
Note: Limiting pressure means very low pressure.

Ideally P —s . Pressure is very low even at about 2 atmospheres real gas behaves
like ideal gas without much error.

Mayers relation

Consider an hydrostatic system (ideal) which undergoes an infinitesimal quasi-
static process, according to first law.

dQ=dUu+PdV . = .. (10)
( OP
Using [ﬁ)v =C,
For ideal gas U is a function of only T.
dU
1es —=C,
dT
or dU =C,dT

Now equation 10 becomes

40 =C dT+PaV <= = SR 11)

From the ideal gas equation, we have
PV =nRT
For infinitesimal quasi-static process
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pdV + VdP = nRdT

or pdV = nRdT - VdP
put this in equation 11, we get
dQ=C,dT+nRdT - VdpP

4 Dividing by dT,

PR =SS e

—

a
Q_c smR-VE
aT dT

At constant pressure

(99—] =C, +nR

dT

By definition

(99] =
ar ),

C,=Cy +aR

or C,-C,=nR
s relation. The equation 13 tells us that C,, is always greate

This is called Mayer
o a gas and allowed to expanda

than C,. This is because when heat is supplied t
constant pressure heat is used for two purposes.

(i) It raises the temperature of the gas (i.e., increase in internal energy) and
(ii) it does work in expanding the gas against the external pressure we haw
dQ=dU+PdV.

On the other hand, when gas is heated at constant volume, no work is done (1.
dW =0) and hence whole of heat supplied is used to raise its temperature.

ie., dQ=dU=C,dT
Thus C,>C,
One more useful equation can be obtained from equation 12
| ie., dQ=C,dT + nRdT - VdP
| J. or dQ=(C, +nR)dT - VdP

B R
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From Mayers relation

Ce=Co=nR
or C,=C, +nR
aQ=CpdT-vap (14)

Experimental determination of heat capacities

Heat capacities of real gases are usually measured by the electric method.
Measurement of C,

The gas whose C,, to be measured is taken in a thin walled steel flask with a heat
ing coil wound around it. Measure the initial temperature of the gas as T, by a sensi-
tive thermometer. Pass a suitable current [ for a time t.

The heat supplied by the heat coil. Q = VIt, where V is the potential difference
given to the heating coil. This heat is transferred to the gas and temperature of the
gas rises. Let it be T,. The heat absorbed by the gas is

Q = CV(Tr _T] )
Using law of conservation of energy we have Vit=C(T,-T,)

VIt
(Tf _"T‘,)

v

knowing V, I, tand T, —T,, C, can be calculated.

To measure C,, the gas is allowed to flow at constant pressure through a calorim-
eter where it receives heat (VI) per second. From the initial (inlet) and the final

(outlet) temperatures the value of C,, can be calculated as before. Use C,, instead of

Bl
Vv
Since the measurements are done at low pressure C,, and C,, measured are those
of ideal gas. The following may be worth noting.

1. For all ideal gases

a) C,isa function of T

b) C,isa function of T

i b T O

d) C,-C,=R, independent of T
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e) E— =y isa function of T and greater than 1
v

2. Fora monatomic gases such as He, Ne and Ar

3
: nd its value C, = =R
a) C, is constant over a wide range of temperature a =

(nearly) 5
b) C, is constant over a wide range of temperature and its value C, = 5 R
(nearly)
c) _gi =y is constant over a wide range and is nearly equal to ;
v

3 For diatomic gases such as air, H,, 0,, N,, NO, CO etc.,

i ' 1 s the tem 2
a) C,= 2 R, constant for ordinary temperatures and increases as th pera
2

ture is raised

b) '3 =_27_ R, constant at ordinary temperatures and increases as the tempera-

ture is raised.
Gy 7 : b et 24 th _
¢) —L=—, constant at ordinary temperatures and decreases as the tempera
Cy
ture is raised.
: Ce
4. For polyatomic gases such as CO,, NH,, CH,, Cl,, Br, etc. C,, C, and C. vary
v

with temperature, the variation is different for each gas.

Note: The behaviour of H, is exceptional. H, is diatomic hence (o= Z R. But very
2
D _ |
low temperature C g > R i.e., behaves like monatomic gas. For all diatomi¢

gases except hydrogen, -91 can be written as
2 .

e



R 2 W/

b elu/’l'
form of f('T) is (TJ T I)T

Quasi-static adiabatic process

When an ideal gas undergoes a quasi-
V and temperature T may change. But ¢
only any two combinations (P, V), (T, V) and (P, T).

Equation of state
Recall equation 11 and 14

dQ=C_dT + PdV
dQ = C,dT - VdP

In an adiabatic process dQ =0

C,dT = —PdV
and C,dT =-VdP
o s S o AP
Eq 15 C, Pdv

Vdp
or Y=——
PdV
or kol K
\% P

0 write down e
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static adiabatic process pressure P, volume
quation of state we require

The equation cannot be integrated as y depends on temperature. But most of the
adiabatic processes temperature change is moderate. Assume that Y is constant and

integrate, we get
yInV=-InP+C

or InP+InV'=C
InPV'=C
or PV’ = constant

e (1)

This is the equation of state of a quasi-static adiabatic process in terms of P and V
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of state in terms of Pand T
PV = nRT

Equation
We have
3 nRT

.=
or P
Putting this in equation 17, yields

¥
p[ﬂ) = constant
P

T‘!
or — = constant
pr

y-1

or —— = constant
T

Equation of state in terms of Tand V
From PV =nRT
P nRT
¥
Put this in equation 17, yields

nRT
—— V" = constant

or TV = constant
Note: It may be noted that an adiabatic free expansion process is not quasistatic,
hences equations 17, 18 and 19 are not valid for this process.

Slopes of adiabatics and isothermals

In an isothermal process
PV = a constant
Taking the differential an both sides we get

PdV + VdQ =0

or ﬂ)-:—_]::
dv vV
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d¥ is the slope &)
av ° e soP

e
i'e" dv im*—_‘v‘

In an adiabatic process
PV" = a constant
Taking the differential on both sides, we get

Py V'V + V'dP=0

Figure 2.7 ¥
SSREB Sl S e e e S S
il v~V
_ dpP =P
]‘e., dv adi ES V

Comparing the slopes of isothermal and adiabatic, we get

ey (&
dv :idi_y dv iso

N

1.e., slope of adiabatic is y times the slope of the isorthermal. Hence adiabatic curve
is steeper than the isothermal cure. See figure above

Isothermal and adiabatic elasticity of a gas

Isothermal elasticity E.)

Suppose we have a certain mass of gas enclosed in a cylinder of a perfectly
conducting material, fitted with a piston of the same material, so that its temperature
throughout remains constant. Let its volume be V and its pressure P.

Now let the pressure P be increased slightly to P + dP, so that the volume of the
gas is reduced to V —dv

Stress applied by the gas =dP

_ change in volume gy

Strain produced S El e
dP
tress gy
Elasticity =3 .S =dv
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dp
:V-av

t constant here, it is called isothermal elasticity and

Since the temperature is kep

denoted by Eig
dP

1.e. Eiso e VW

dicate the fact that when pressure increases

the volume deceases WE puty

To in
negative sign.
dP
e %,
R amER (20)
For an isothermal process, W& have
PV =K
Taking differentials on both sides, W€ get
pdV +VdP=0
dP
or P= —VE\*?
Thus e e R (21)

This shows that isothermal elasticity of a gas is equal to its pressure.

Adiabatic elasticity (E ;)

dP

Weh E=rV—

ave qv

Suppose the system undergoes an adiabatic process, then the elasticity is called
adiabatic elasticity.

: dP
1.e. E.=-V—
ae dVv

During an adiabatic process, we have

PV'=K
Taking differentials on both sides, we get
PyV''dV +dPV’ =0

—
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Dividing throughout by Vil we get

PydV +dPV =0
dp

% iy
or i, YP

R RN S e el (22)
This shows that adiabatic elasticity of a gas is equal to 7 times its pressure.
Comparing eq (21) and eq (22) we get

E.=YE, weee (23)

The reason for E_;, >yE,  is that for similar change in pressure dP, there is a
larger change in volume for the adiabatic process.

The microscopic point of view

Here we discuss the limitations of classical thermodynamics based on macro-
scopic point of view and need for microscopic point of view.

The first law of thermodynamics which is the relation connecting between work,
heat and internal energy. This can be applied to class of systems such as solids,
liquids, vapours, mixture of substances etc. The solution of the first law does not
give properties of a particular system. For example we measure C,, of a system

given by
(2]
a’l" v

This is true for all hydrostatic systems. If we know the internal energy we can
calculate C,,, where C,, is a function of T and V. Thus the heat transferred during an
1sochoric process is

T
Q= J‘ C,dT, provided C,, is known. But in classical thermodynamics nothing
T

provides detailed information of U and C,,. This one of the major limitations.

Another limitation is that classical thermodynamics is unable to provide the equa-
tion of state of any desired system. To have an equation of state involving P, V, T

\Y oT :
and the derivatives (QE) ; (_6__) and (—-J are required. These values must
T P v

oV oT oP
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ch system we have to conduct expey;.

come from the experimental results. For €a
ental datas for all systems arc not avaj|.

ments to evaluate those derivatives. Experim
able. |
S0 to obtain informations regarding thermal propertics of system without having

al measurements we £0 for analysing the system at microscopic leve|

to experiment . ; :
We require calculations based on the properties and behaviour of particles of the
system, There are tWo such theories developed. One is the kinetic theory and the

other one is statistical mechanics. Using laws of mechanics and statistics kinetic
theory deals with the average motion of particles and their collisions in order tg
calculate the equation of state for the ideal gas. But statistical mechanics deal with
average value of energy of particles or ensemble of particles. Once the energy is
obtained we can develop equation of state and thermodynamic variables and func-

tions.

Kinetic theory of ideal gas
Here our aim is to formulate a microscopic theory of ideal gases limited to mong.
tomic gases. To develop the theory several assumptions are made. The assumptions

are called postulates.

Postulates of kinetic theory of gases
1. Any sample of gas consists of an enormous number of atoms N. For any gas il
atoms are identical and inert. If m is the mass of each atom, the total mass is mN,

If M be the molar mass, then the number of moles n = —I\;—ﬂn—l The number of

. M .
atoms per mole is — = il is called Avagadro's number denoted N . It values
m n

calculated by Avagadro and is given by N, =6.0221x 10% atoms/mole.

2, Thc-atoms are assumed to be small hard spheres and they are in ceasless randon
motion. The average distance between neighbouring atoms is large compared
the size of the atom.

distior cxg;nple the size of the atom is of the order of 2 or 3x10™"m. The averagt
stance between atoms is about 50 times di ' .

i es diamet tand: s (
temperature. er under standard pressure an
3.

It is due to e dists

interatomicﬂflg lflrgcfdrstanc'e between atoms it is also assumed that there "

play only Whe;wto attraction or repulsion between atoms. Forces come it*

collisions the T .C(’”‘dﬁ with one another and also with walls. Betwe?
ons they move with uniform rectilinear motion
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4. The walls of the container is assumed to b

. ¢ smooth and the collision is assume
to perfectly elastic. If v is the speed « e

of an atom approaching a wall, the
perpendicular component v is retraced back with same velocity, therefore total
change in velocity is -2v,

5. When there is no external field of force, the atoms are distributed uniformly

v N 1 N
throughout the system. So that the number density v is a constant. In any
small element of volume dV, there are dN atoms, where

iy or dN - dVv

P o ) = —

dv v v
The infinesimal dV must satisfy two conditions of infinetismal in
thermodynamics. dV must be small compared to V and large enough to make
dN a large number.,

6. Since the motion of atom is random there is no preferred direction for the velocity.
All directions are equally probable.

7. Atoms moves with different speed varying from 0 to any value.
With these assumptions we Ay
can arrive at an interpretation
for temperature in terms of E F
kinetic energy

Consider cubical box
ABCDEFGH of side [ contains D¢ e
certain amount of ideal gas. The
volume of the gas is I*. Let m and ' P
N represent the mass of each atom 0 X
and number of atoms respectively 7 G > X
present in the box. .

Consider an atom p moving in
arandom direction with a velocity ! B
¢,. This velocity can be resolved Figure 2.8
in to three components u,, v, and
w, along the X, Y and Z axis respectively (see figure).

cZ=ul+v+w,
The velocity with which the atom P strikes the face BCFG is u, and the
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m is mu,. 1t is due 1O elastic collision the atom is refleg,
i

corresponding momentu
with the same momenturm.

The change in momentum impact of collision

due to the

= mu, _(—mu,)=2mu,

The atom reflected from BCEG travels a distance l
wall again reflected back to hit on BCFG. The total
when it collides with the wall BCFG is 2.

The time interval between two successive collisions on

towards ADEH strikes on
distance travelled by the a,

the wall BCFG is

B distance 21

speed u,

Lok

Number of collisions per second = 57 51

U,

Change in momentum produced in 1 second = 2mu, - I

The force due to collision due all atoms (N) along the X-direction is

m :
F :—[—(uf +Ul +....0y)

X

X

Force per unit area on the wall BCFG is P, =—
l.-

m, ,
5 P :T(U;+u§+....ui)

Similarly P, and P, are

m.
e=a ) +v2i+..v2)

and _m_ 5,
P —[T(W, + Wi+ W)

. .
! l . .

re
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p_Px+P +P,
3

i.e P:—nl—[(u2+v2+ 2 AP SR 2 2
IS TP ST TV W b W e (o )]

= m 2 2 2
L 32 Sl s L s e (24)
Let ¢ be the root mean square velocity of the atoms
2 2 2
2:C1+C2+"'CN

N

C

7 A 2
or Nec® =¢; +C5 40l

Put this in equation 24 we get

P= ﬂi Nc?
3l
or B s (s P =volume)
3V
or PV = %mch ..... (25)

From the experimental results of thermodynamics, we deducted the equation of
state of ideal gas given by

PV=pR T S e e e s e (26)
Comparing equations 25 and 26, we get

aRT = %mch @7)

mN1 ,
ir e
nR 3

This can be re-written as

e %Gmd—’-] . (28)
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: me” is the average kinetic energy of the atoms. Thus we have
9

kinetic energy o T
It provides an interpretation of temperature on th‘e basis of _kin.clic theory. In ki.
netic theory of gases We€ assumed that there are no llll't‘\i‘ ;1F()111?c forces. Hence par.
ticles posses no potential energy. So the entire energ-y 18 l-;met_lc. Moreover WC. also
assumed that atoms are in rectilinear motion. Thus this energy 18 purely translationg|
kinetic energy. The monatomic gas possesses no rotational or vibrational energies,
Therefore the internal energy (U) of a monatomic gas is the sum of the kinetic ener.

gies of all atoms.

| .
Le., Ll = Z_IntC:
i
or Us—Y» ¢
U= Nlch: -~Nlmc2
g &g

o ) 1 ,
Substituting for —2-mc2 from equation 27, we get

U= ﬁBnRT
2 N
3n
or U= 7RT ..... (29)

It shows tl_lat mtem_aI of ideal gas is proportional to temperature only which is in
agreement with experimental results. _

From equation 29 we can calulate C yand C
2

L ‘_U] 3
A L REEERE R (30)

Tai )
Using C, ~C, =R
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5
C, ==
or p ?I1R (3D

Equations 30 and 31 show that C, and C, are independent of temperature.

N
Using n = I:a —, the equation can be written as
A

3 N
U=2 - RT
2 N

A

R 2 i T
The term N =1.3807x 107" JK™ is called Boltzmann's constant denoted by k.
A

3N
U=—KkT e (32)
= .

Average kinetic per atom is

Sy

N2

| :

or —mc” =—kT

2 2

’} -
The rms velocity ¢ = \j =1 WO 15, .3

m

Note : In the case of diatomic and poly atomic gases they possess rotational and
vibrational kinetic energies in addition to translational kinetic energy. As
there is no interaction, potential energy is zero.

nRT _(:1_

In general U = LT

¥ =l Cy

The ideal gas equation PV = nRT is not obeyed by real gases, particularly at high
pressures and low temperatures. In the derivation of the ideal gas equation on the
basis of kinetic theory of gases two assumptions that have been made which do not
hold good in case of real gases. They are (i) atoms are point masses and (ii) there are
no interatomic forces. But in actual practice, at high pressure size of the atom be-
comes significant and cannot be neglected in comparison with the volume of the
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oas. Also at high pressure the atoms comes closer and interatomic forces m"e appre-
ciable. Hence ideal gas equation needs modification. Soin 1 881, \’§l1der Waal pro-
posed an equation of state that accounted for the finite volume ot-the atoms and
interaction between the atoms. The Vander Waals equation of state 15

;(P+373 | (V-b)=nRT
\ N /‘J

Where the constant a accounts for interatomic force between the atoms and b
accounts for volume correction. It is due to the finite size of atoms, the actual vol-
ame available for the movement of atoms is less than the volume of V of the vessel.
P appearing in Vander Waals equation is the observed pressure. It is due to correc-
tion observed pressure decreases.

Vander Waals equation of state is not valid for all real gas. After that several
equations of state had been proposed such as claussius equation of state, Berthelot
equation of state, Dieterici equation of state, Saba and Bose equation of state and so
on. None was perfectly correct.

Example 1

£
Expand the Vander Waals equation of state, | P+ 2 | (v—b)=RT in virial se-

. F L :
nies form.
Solution
;
a
P+— {(u-b)=RT
B
-~ .
5 b
pl1= pli——|=RT
Pv° !
- 5
3 RT
-
or - L
a 2
A ?_' = :
v o
. { . g
L., Po=RT 1-2 i
) PO
7
Since 3
e —and — e s
" p2 “cVey smzll ve can 2onlv B;
: 5 3 it We can apply Bionomi
 of g A28 510

al approximation
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[ { \
Po=RT|[1+2 (-2 )

\ v/ PV
Po=RT[1+2__2 _ b )

v Puv® Py

ab . Lo
The term B 1s negligibly small
T

Po=RT|1:2-2]

v Pu) —

The second and third terms on the R.H.S are correction terms. There we can use
Pu=RT

RT
In the second term put v= ? and in the third term put Py =RT

[ bP a
Puo=RT| 1+ -
RT RTu,
7 .
or Po=RT|i+-2>P-—2 p
\ RT RE" )
r/ / b
Po=|14| —= ji =
RT R'T) )

This is the required form,
Example 2

Write down the Dieterici equation of state, Pe¥-(y—b)=RT in the virial form

Solution
Pe®™ (u—b)=RT

Pu—Pb=RTe &

Pu=Pb+RTe #*




90 Thermodynamics

Expanding the exponential term

a
30=Pb+RT| 1=—
ac [ RTUJ

Retained only linear term.

T Al
P RT| e +l~l}
RTv RT

"

: . RT . v
If we substitute v=—— for the second correction term, we get
P

Po=RT|1=-o 12

R’T? RT
o Pu=RT 1+(—b—,— ff,!-;)PJ
T RT )

Note : Look at the answers of example (1) and (2), they are same.
Example 3

If the pressure of an ideal gas varies according to the equation P =P, —aV*

L]

where P, and a are constants find the maximum attainable temperature.

Solution
P=P, -aV’
Using PV = nRT, v:ﬂ
P
Bep... an’R*T?
3 _pp? . 2p2m?
P’ =P P? —an’R*T wooes (1)

Differentiating with respect to P we get

3P = 2P P-an’R?2T dT

dP
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For maximum temperature (_]I =0
dP

3P =2P,

P:Lz_p”

3

Put this in equation (1), we get

ﬂanz Tll)] X - i P‘-J' o _EE- Pr]
R . B
dHZR? l;ll'l'k = i P“‘
iy
$.a 2 B
™ 3.3 JanR
E(i B
max 3 n a

It may be checked that jpf

is negatiave.

Example 4

9N

S ot g

Find the minimum attainable pressure of ideal gas in the process T = T, +aV?,

where T, and a are constant

Solution

T=T,+aV’ given

PV
Using PV =nRT, T=—
nR

PV - T +aV?
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= HTOR +anRV """ (1)
or Vv
i‘g:_fﬂ)_RAr R
SO dv \&

dP :
For minimum pressure T =0, yields

nT R

VzanR

V= J'_I‘_; put this in equation (1)
. :

'{T
P :nT°R+anR =
40 a
/__0_
a

P — R /AT, +1R\Ta
P.. =2nR,/aT,

2
It may be checked that —gv—l: 1S positive.

Example 5

Prove that the work done by an ideal gas with constant heat capacity C,, during a
quasi-static adiabatic expansion is W = -Cy(T.-T)
Solution |

We have dQ = dU +dw

or dQ=C,dT +dw
For an adiabatic process ¢Q =0

dW =-C dT




T
integrating W =—{ C,dT=—c, (T, —T)
T] i

Example 6

Ideal gas 93

Show that the heat transferred during and infinitesimal quasi-static process of a

an ideal gas can be written as

oV
dQ = V_dE + & -PdV
nR nR
Solution

We have dQ =dU + PdV
or dQ =C,dT +PdV

From ideal gas equation of state
PV =nRT
Take differentials on both sides, yields

PdV + VdP = nRdT

_PdV+VdP
nR

Put this in equation (1), we get
(PdV + VdP)

or dT

dQ=C, +PdV

C,VdP C,PdV
= + =
nR

dQ = CV;:P + Pdv[% +1]

C,VdP PdV

PdV

dQ

(Cy +nR)

or dQ =

nR
Using C,~C, =R, C, =C, +nR
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C,VdP PdV .

nR nR

Example 7
Calculate the internal energy of the air in your room of volume 40m>. Assume

that air behaves like ideal gas
Solution

We have U= ﬂ

y-1
For ideal gas PV = nRT
Py S 1x10° x40
y—1 14-1
=10MJ

U =107

Example 8

If h is the height above sea level show that the decrease of atmospheric pressure
due to rise of dh is given by
Mg

———=dh
P RT

where M is the molar mass of air, g is the acceleration of gravity and T is the
temperature at height z.

Solution
Consider a layer of thickness of air dh at h height above
the surface of the earth. The pressures acting on the two lp
sides of the layer are shown in the figure. Equating the
upward and downward forces, we get & I
Adhpg +(P+dP)A = PA TPH"’
& dP =—pgdh :
Using PV =RT
PM : /J
——=RT gives p:ﬂ’! Ea;N
p RT Figure 2.9
dp = . PMgdh

RT




dP _  Mgdh
or p RT
Integrating this we get the variation of pressure with height
P
Mg ¢
=— dh
-}
P __Mgh
P, RT
Mt
P = P() e RT

In this derivation temperature is assumed to be constant.
Example 9

Ideal gas 95

A horizontal cylinder closed at one end and is rotated with a constant angular
velocity @ about a vertical axis passing through the open end of the cylinder. The
outside pressure is P, and temperature T and the molar mass of air is M. Find the air
pressure as a function of the distance r from the rotation axis. Assume that molar

mass is independent of mass.
Solution

The centripetal force on the thin layer of thickness dr is
| F =(P+dP)A -PA

mre’ =dPA
Apdrre’ =dPA
W
dP = po’rdr e (1) d) S
PV =RT
pe«— —>»P+dP
P BIpTe e )
M
e v [
Eql -
B, Sives
2 Figure 2.10
dP Mo’

—rdr Integrating
P RT
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I

P 2
dr _ Ma jrdr

P RT

P, 0

P Mo’
In| —|=
2RT
M(u)lr1

R=Pe ittt

Example 10

Find the work performed by one mole of a Vander Waals gas during its isother.
mal expansion from the volume V, to V, at temperature T.

Solution

We have [P + %) (V—b)=RT for 1 mole.

R va
V-b V?
v,

Work done =- IPdV

v[V_b Vi V?
W=-gT p2D) (1 1
Vi-b) |V, v

Example 11

Air is compressed adiabati

call :
temperature. Initial temperatur T volip

e. Calculate the change 1"

e is 27°C,
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Solution

Initial volume =V, Final volume =

0| <

Initial temperature = 27°C =27 4273+ 300K
Using TV = V)"

\s!

300(V) ™ =T, GJ

300V5 =T,275 . v

300
T,=—=300x1.319
23
=395.85K
Change in temperature = 395.85 — 300 = 95.85K
= 95.85°C.

-
Note : Since air is diatomic, ¥ = 3

Example 12

A quantity of air at 27°C and one atmospheric pressure is suddenly compressed
half its original volume. Find the final pressure.

Solution
Vv
P, =latm, V, =V, vV =5
Using PVi=EV]
v ¥
PV" =P, (5]
e

p, =1x2"* =1.263atm




o — AN ien Drs 1 %% E
A ser- SEEENEG D 2 PREISSUILC gulil SUMOUC
. &a= £ achahatic expansion. Imtial temperature 27 C and 4
Saiiis wr N AN TAPSINRR nal r
Seigiiod
P —3am P, =lam and T, =27+273=300K
r=14——
= S
:.Z_‘-':-'.:_ T;’4 -_—T- ?:L
PR, = = s
T P, P
o - e =
| B P
3007 |3
L= 'Z‘ 300
Ly -1, 21-1 2
T. =i = " -uj:. =2 =
4, o .—.

Fall mtemperatuee = T -T

In
s_l(: s
-]
o0 =
|
7Y o
[
O
(S

Example 14

The initial temperanure of :

' perature of 3 gas 5 77° 5

is compressed sudde J o e 27°C. Calculate the temperature when the
iy tddenly to 8 times its original pressure (v 15

Solution [ =1.9).

o

L=2rc=2.




Using

‘]
L ,.__‘

or T, =600 K
Example 15

A gas occupying 1 litre at 80 cm of Hg pressure is expanded adiabatically to
1190 cc. If the pressure falls to 60 cm of Hg in the process, deduce the value of 7.
Solution

V; =1litre =10°cc, P, =80
V, =1190 cc, P, =60

Using P.VI =P, \'A

80 (10°)" = 60(1190)’
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or

or

ok
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80 (1190 )
60 L 1000
2

=(1.190)!
3 = (1.190)

log% =v log1.190

G

Y=o 3 S Db
119~ 0.0755

¥ =1.66

IMPORTANT FORMULAE

)

Temperature of ideal gas

T=273.16 Lt {iJ

Prp—0

Virial expansion

Lt(Pv)=A =RT
P—0
Molar gas constant
(PU
Lt
273 16

Ideal gas equation
PV = nRT

For isothermal adiabatic free expansion

8] 0u() -
®) M| Gv) =0 U=KT)

=R=8.314Jmol 'K




6.

10.

L

12,

13,

For a real gas

2 U
il Y, T {( J 0
P /4 v ).

Mayers relation: C, —C, =nR

Two important relations
dQ=C,dT + PdV
dQ =C,dT — VdP

Equation of state of quasi-static adiabatic process
(1) PV’ = constant

1-1
(i1) T = constant

(iii) TVr! =constant

Slopes of adiabatics and isothermals

’ dp P
(i) (d—v]m ——v

(i) ﬂ} S L e [ﬂ} =l L
dv adi V dv adi dV' 150

Isothermal and adiabatic elasticities

) Em:_v(ﬁj _p
av J.

(i) E, :_v[ﬁj ~ 1P or Ey =7E,,
dv adi

Relation between temperature and kinetic energy

2N('1 3]
=== —C
3R[2

Expression for internal energy and heat capacity of monatomic ideal gas.

3 3
U=-nRT, Cy=—nR

Ideal gas



102 Thermodynamics

3
IN.; = =Nk
or U:-E-kr C\’ 2

14. Vander Waal's equation of state

[pﬂfi}(v-nb) =nRT
Vi

UNIVERSITY MODEL QUESTIONS

Section A

(Answer questions in about two or three sentences)

Short answer questions

1
2
3
4.
5
6
7

11
12,
13.
14.
15.
16.
17.
18.
19.

20.
21,

- What are adiabatics?

What is the basis of arriving at equation of state of ideal gas?

Write down the virial series expansion of real gas and explain the symbols.
Draw Py versus P graph at constant temperature in the range 0 to 4 x 10°Pa.
Define molar gas constant. What is its unit and value.

Under what conditions ideal gas equation is valid.

What is meant by adiabatic free expansion?

Show that the internal energy of a system remains the same when it undergoes free
adiabatic expansion.

Define the Joule coefficient.

In an isothermal, free expansion express internal energy in terms of pressure.

On what all thermodynamic coordinates the internal energy of a real gas depend.
Define ideal gas.

Write down three equations that ideal gas satisfy.

Write down Mayers relation and explain the symbols used.
Explain why Cr2C.

Why a gas has two heat capacities?
Write down the Properties of molar

heat capacities of j
: ideal gases.
Write down Cy» C, for a monatomic

1deal gas,

Write down the temperature dependence of C C
pr iy

What is the exceptional behavioyy of

Write down ¢h
€ three €quation
s of state of quasi-stafin o; .
What are isothermalg? Auast-static adiabatic process.

and y for a diatomic gas.
C, of hydrogen atom?
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23. pefine (i) isothermal elasticity ang (i1) adiabatic elasticity of a gas
24, Mention two limitations of classical thermodynamics J o

25. Write down the Vander Waals equation and explain the symbols used

26, Write down an expression for the internal energy of a monatomic gas and obtain C
, v

Section B
(Answer questions in about h

paragraph / problem type
{. Briefly explain Joule's experiment.

alf a page to one page)

5,550 T (-, 14 PR
2. Show that TQ*J =0 and (-PJ -V for an isothermal free expansion,
oV )y x Jy
Derive the relation C, - C =nR
Briefly explain the experimental determination of C, by electric method.

Derive the equation of state of a quasi-static adiabatic process.
Show that adiabatic slope is steeper than isothermal slope.
Show that adiabatic elasticity is ¥ times isothermal elasticity.
What are the limitations of classical thermodynamics?

What were the assumptions made in the kinetic theory of gases?

©®° N A sw

10. Explain the reason for the modification of ideal gas equation.

: -J(U —b)=RT in the virial form.

.
5

11. Write down the Berthelot equation of state ( P+

\

15}

12. The pressure of an ideal gas varies according to the relation P = p”e"""f where P, and

: . . F:
are constants. Find the maximum attainable temperature [Tm = {;R]
ne

13. Prove that the work done by an ideal gas with constant heat capacities during a quasi-

Y1 P,
14. An open glass tube of uniform cross section is bent in to the shape of an L. One arms is
immersed a liquid of density p, the other arm of length remains in the air in a horizonal

position. The tube is rotated with a constant angular speed ® about- the axi§ of the
vertical arm. Prove that the height h to which the liquid rises in the vertical arm 15 equal

static expansion is equal to W =

o h =&(1 _eT )
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to 4 times its initial volume. Calculate the

a gas expands isothermally e e

15. A volume of
work done by the gas.
5 1 1 B B COA l r‘ :
N y== | is adiabatically compressed from a
tomic perfect gas ( 3)
16. One mole of a monoa

é Bres. ASsumi :
S e of 1 atmosphere to a final pressure of 150 atmospheres A__ ]\ -.mng the
mmi} ijress{lal:ature of the gas to be 27°C. Calculate work done on the gas during cop,
initial temp

: 2.397 x10)

pression (latm =10°Nm™) | lbl T |
17. One mole of a gas at 127°C expands isothermally until its volume is doubled. [:;L:Jghf
: amount of work done. 2301

igi o asi statie

18. A sample of an ideal gas is expanded to twice its original volume .of Im’in aﬁun l‘sll :smn_
. process for which P = KV?, where K is a constant whose value is 5 alm/ml .7‘;1 L;n(];:m

, 11.76 X PJ

the work done by the gas. [ ]

19. A quantity of air (y=1.4) at 27°C is compressed suddenly to 4 th ofits volume. Fing
= 522.3K]
the final temperature. I [ - K]

20. One mole of nitrogen expands isothermally at 20°C from a volu_me of 10 l:'ne to 20 I itre,
Find how much heat must be supplied to keep the temperature from dropping. R_ = 8.3l
molK [1685.7]]

21. One mole of helium at 27°C is compressed adiabatically so that pressure becomes 32

times its initial value. Find the final temperature and work done R =8.3J/mol.K and
Y=§ ~ [1200K, 11205 ]
3
Section C

(Answer question in about two pages)
Long answer type questions-Essays
1. Describe Rossini and Frandsen experiment and prove that internal energy is a function
of pressure, volume and temperature,

2. Based on the kinetic theo
kinetic energy.

Hints to problems

ry of gases arrive at the relation between temperature and

|
\
\

( \
L _B I
| WU2JU(1 U]—RT

7
i1, (P“L?r;i‘J(U—b):RT




12.

13.

Pu=RT| 1 2 (H a_ Y’
= 7 UJ ; PTUEJ

(
el (1) -

PU=RT{1+]—J— = 3}

v PTvu

Use Pu=RT on the correction terms

py=Rr(1+22_ T )
RT R'T )

b a )
PUzRT 1+———ﬂ—3JP
RT:- RT i

=

nRT
P=Pe™ use P =

PV dT £
— ¢ Find g

nR av o oave o

T =

1

Find T, . T is maximumat ¥ = B

We know that the adiabatic work done is

w . BY ~BY,
=]
e e B e S )
v-1 BV,

In an adiabatic process the equation of state is PV" = constant

BE P ViT = Pf\lt:!

Ideal Qas
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Vi :‘ -
v

Put this in equation (1), we get the required result.
14. hpg=P, —P, P emerges from centripetal force is calculated in example 10.

4V
15. W=-RT linE = —RTlnu\T:—RTlnél
1
=-1.386RT
Negative work indicates work is done by the system.
y-1 v-1
16. B == Pz_{ P =1, P, =150, T, =300
Tl T2
T,=2226 K

Work done W = i(T2 =T)
¥=1

R =83Tmol 'k
W =2397x10%]

Work done positive indicate work is done on the system.
17. T=127+273>300K

W=-RT In2, R =83
Vl

W=-2301)

Negative work done indicates work is done by the system

V.!
18. Work done, W = _ j PaV = —jEKVQdV
V, 1

)

K=5x10°
W=-11.78x10°]

Negati indi
Negative work done indicates work is done by the system

3, Cot=

|
—

2




Using T,V =T,V}"

T, = 522.3K.
20. We have
dQ =dU +dW =dU + Pdv = C,dT + PdV
dQ =PdV ¢ dT=0)

Q:IPdV:RTlnlg

1

= 1685.7]
prt prt
Sl
TEC T
P =P, P, =32P
T, =300K
T, =1300K

Work done W = -R—I[Tj -T,]
e

=11205J
Positive work indicates work is done on the system.

[deal gas
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'SECOND LAW OF THERMODYNAMIC

= S

— —

Conversion of work into heat and vice versa

First law of thermodynamics enables us to convert work into heat and vice versy
in principle. How to achieve it experimentally is the discussion of this section.

Work into heat
According to first law of thermodynamics we have

Q=U,=U,+W
If a system is subjected to a process such that it is brought back to the initial state,
then [_Jf - Ui =0

W=Q

This shows that work can be completely converted into heat and the efficiency is
100%. The process can be continued indefinitely since in each process system comes
back to the initial state. This indicates that work can be transformed into heat indefi-
nitely.

How to achieve this in practice is our problem. For example when two stones are
rubbed under water, it is due friction, heat is produced.

As a result temperature of water rises. If the mass of water is very large there will
b% no appreciable change of temperature of water. Here water acts like a r i
Since the state of system (stones) is same at the beginning and end, Th e.Servmr.
the process is the conversion of work into heat. ' B icitol

That is to convert work into heat we re

s and (iii) a reservoir, quire three things (i) a system (ii) cyclic

B
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% Q=W (.
, is converted i ;

. ¢. heat is 1nto work completely. Byt in this process, volume i

and pressure decreases. This process can cont i ol

; : inue only up to pr.
spheric pressure. 1.e., the extraction of work P 10 pressure reaches atmo-

stops. Therefore the process of ;
; ce -
mal expansion cannot be used to extract work indeﬁnitely e

So to get work from heat we need a series of pro-
cesses in which a system is brought back to jts initial

U,~-U. =C,dT =0)

state (cyclic process). In each cycle work is done by High temperature
absorbing heat. For this to takes place we require two heat reservoir
reservoirs one at high temperature called source and g

the other at low temperature called sink.

Let QH be the heat exchanged between the source
and the system and Q, be the heat exchanged between
the sink and the system. W be the work done during
each cycle. To realise this in process heat must be
extracted from the source by the system. The system
performs work in each cycle then the remaining heat Low temperature
will be rejected by into sink. A device does this pro- heat reservoir
cess is called heat engine.

Figure 3.1: Schematic repre-

Heat engine sentation of heat engine

Any device which converts heat energy into me-
chanical energy is called heat engine.

Thermal efficiency of heat engine

The heat extracted (Q,) from the source during each cycle is called the input
whereas work obtained (W) during each cycle is called the output. The thermal
efficiency (1)) of the engine is defined as the ratio between the workout put (W) to
the heat input Q,,.

__ work output

ie. = :
heat input

W
Qy
According to first law of thermodynamics

Qy-Q =U,-U;+W
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For a cyclic process
Qg"Qsz
_QH"—QL=1_9L 2
n= Q. et (2)

This equation shows that the efficiency of the engine is always less than o,
(100%). If Q, =0, n=1=100%

It shows that the efficiency of the heat engine is 100% only if engine work
without rejecting any heat to the sink. This cannot be realised in actual practice,

The transformation of heat into work is usually accomplished in practice by twy
types of engines namely internal combustion engine, such as the gasoline engine
and the diesel engine, and external combustion engine such as the steam engine an(
the stirling engine. In both the engines working is almost the same. In general a hea
engine in its simplest form consists of a cylinder closed at one end and provided
with a piston. The cylinder contains gas or mixture of gas the as the working sub-
stance. When the gas in the cylinder is ignited the temperature and pressure of the
system increases to a high value. The high pressure provides force to perform work.
In the gasoline and the diesel engines combustian takes inside the cylinder are called
internal combustian engines, where as the combustian takes place outside the cylin-
der are called external combustian engines.

Heat engine : Kelvin-Planck statement of the second law

We found that there are different kinds of heat engines. Here we discuss the
fundamental theory of operation of heat engines. The second law of thermodynam-

ics is based upon th.e ope‘rations of heat engines. Though second law is an indepen-
dent law stands by itself it emerges from the draw back of first Jaw.

Second law of thermodynamics

The first law of thermodynamics gives the relation betw :
et |
energy 'and that one of them ¢ een heat and mechanica

: an be converted into another. But it has two major
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Kelvin’s statement

«Jt states that it is impossible to get continu
pody to a temperature lower than that of the
Clausius’s statement

«Jt states that it is impossible to transfer heat from a
without doing external work”,

ous supply of work by cooling a
coldest of its surroundings”,

cold body to a hot body

This statement is pased upon the performance of refrigerator (A heat engine
working in reverse direction). This means that the natural flow of heat is always
from a hot body to a cold body. If heat is to be transferred from a cold body to a hot
pody work will have to be done by an external agency.

Planck’s statement

continuous operation of a machine that creates its own energy

“It is impossible to construct an engine which working in a complete cycle will
produce no effect other than the raising of a weight and cooling of a heat reservoir.”

Thus, it is impossible to construct an engine which working in a complete cycle
will produce no effect other than the absorption of heat from a reservoir and its
conversion into an equivalent amount of work. i.e. perpetual motion of second kind
is impossible. The engine must reject a part of the heat absorbed to a sink at lower
temperature.

The statement of Kelvin and that of Planck can be combined into one equivalent
statement known as Kelvin-Planck’s statement of the second law of thermodynamics.

Kelvin-Planck statement
“It is impossible to construct an engine which, operating in a cycle, has the sole

effect of extracting heat from a reservoir and performing an equivalent amount of

work”.
- It may be noted that second law is not a deduction from first law, it is a separate

law of nature. The first law denies the possibility of creating or destroying energy.

The second law denies the possibility of utilising energy in a particular way. The
thus violates the first

: : ‘ hine
law is call . machine of the first kind. The operation of a machin
g o ir thus violating the second law 1s

that utilises the internal energy of only one reservo

Called perpetual machine of the second kind.
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Refrigerator-Clausius’ statement of second law

A heat engine is 2 device that takes a working substance throu gh a cycle 9
operation during which some heat is absorbed by the system frqm a higher tempe".ature
heat reservoir and doing work by the system on the sgrroundmgs and the remainjp, "
heat is rejected to the lower temperature heat reservor.

Refrigerator

A refrigerator is a heat engine working in the reverse order and works on the
principle of second law. A device in which some heat 15 absorbed‘ by t.he System
from a heat reservoir at low temperature, a larger amount of heat 1s rejected to g
reservoir at a high temperature by doing work on the system by the surroundings. A
device that performs a cycle in this way is called a refrigerator. The working instance
(system) is called a refrigerant. Refrigerators are used for climate control. Ajr
conditioner and heat pump are the two examples.

Let Q, be the amount of heat absorbed by the High temperature
refrigerant from the lower temperature reservoir, Q, reservoir
be the amount of heat rejected by the refrigerant to
the high temperature reservoir and W be the network
done on the refrigerant by the surroundings. A

schematic diagram of refrigerator is shown in figure
32.

According to first law, we have

Q;—Q =U;-U. +W

As the refrigerant undergoes a cycle, change in

. Low temperature
internal energy is zero.

reservoir
Thus ~0 =W :
i A%-Q Figure 3.2: Schematic repre-
or Q, = Q +W sentation of the refrigerator
HCX@ QH > QL:

absorbing i ;
ervoi and rejecting | £ a small quantity of heat from the

low temperature res-
"fabove equation shows

Kelvin-Planck

‘ Statement :

second law. Two statem:f?t:s ZI:S C!auslus statement are two different statements Of
said to be equivalent when the truth of one implies
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i truth of the second, and the truth of the second i

LetK represent the truth of Kelvin-Planck

Clausius statement. We use two symbols =
¢. The symbol D means to imply.

mplies the truth of the first.
statement and C represent the

truth of
and > . The symbol =

denotes equiva-
Jen

In Symbolic language the equivalence of two statements can be put in the foll
e OW-
K=C
fKoC and C oK.

The equivalence of two statements can be put in another way. Two statements are
said to be equivalent When the falsity one implies the falsity of the second and the
falsity of second implies falsity of the first.

Let —K represent the falsity of Kelvin-Planck statement and —C represent the
falsity of Clausius statement

In symbolic language it can be put as
| =G
If -K>-C and -C > -K.

‘To demonstrate the equivalence of Kelvin-Planck statement and Clausius state-
ment we will use the second definition of equivalence.

1. To prove that —C 5 -K

Consider a refrigerator. Let Q, be amount of heat absorbed from the low tem-
perature reservoir and Q,

be the amount of heat re- High temperature
jected to the higher tem- reservoir
perature reservoir without 1 5
doing work W on the re-

frigerant. (see schematic
Iepresentation in Fig. 3.3). No work
This violates the Clausius

Statement. Suppose a heat Refrigerator
engine operates between

the same two reservoirs 9 v
Such that the same Q, isre- Low temperature

JeCted to the low tempera- reservoir
tre reservoir.

WZQH—QL

Figure 3.3
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The heat engine does not violate any law. Now consider thc—:_ hezfu_c‘rfgine and g,
refrigerator as a single machine that takeg Q= 'QL amount qf heat h‘ om t_hc higy,
temperature reservoir and converts all this heat into work .wnhoul producing any
change in the low temperature reservoir. This violates Kelvin-Planck statement, g

we proved that —C 5 —K.

2. To prove that —-K > -C

Consider an engine working between high temperature reservoir and low fey,.
perature reservoir. Suppose the engine absorbs Q,, amount of heat from the high
temperature reservoir and
does W amount of work

_ High temperature
and no heat is transferred

reservoir
to low temperature reser- i t
voir. It violates Kelvin- 5
Planck statement (see sche- 5

matic representation in fig-
ure 3.4). Suppose a refrig-
erator operates between the Heatengine
same two reservoirs such
that Q, amount of heat is

Refrigerator

absorbed from the low tem- Low temperature
perature reservoir by using reservoir ;

up the work done by the

engine and rejects Figure 3.4

Q, +W=Q, amount of

heat to the_: high temperature reservoir. The refrigerator does not violate any law.
Now consider the heat en

. gine and the refrigerator as a single machine that transfers
0Q‘;acrlno«?unt of heat iir()ﬂf;]l the lower reservoir to the high temperature reservoir with-
Mg any work. this violates Clausius state 1S violati '
ment. That is violation of Kelvin-
Planck statement implies v

iolation of Clasius statement. So we proved that —-K > -C.
Reversibility, irreversibility and its conditions
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&)

e direct process an equal amount f work mug o
process. - durmg the reverse
For a reversible process to take place,
iy dissipative forces like friction : ici :
(i) dissipa ction, inelasticit ' : -
etc., should be absent Y, Viscosity, electrical resistance
(i) the system should always be i
the surroundings.
(iii) must be quasi-static.
{. Take some gas enclosed in an insulated cylinder fitted with w
Compress the gas very slowly by applying on the pi

mechanical and thermal equilibriym with

ell lubricated piston.
Ston a pressure slightly

than the pressure exerted'by the gas. The gas will expand and do almost the
same work during expansion as was done on it during compression.

2. Take an elas:'.tic spring. Compress it gradually by applying some force on it.
Some work is done on the spring. Now reduce the force of compression. The
spring will expand and so almost the same work as before.

3. The infinitesimally slow isothermal expansion and compression of a gas is a
reversible process.

In fact all isothermal and adiabatic operations are reversible when carried out
very slowly. It must be remembered that every reversible process must be a quasi-
static process. The reverse of this is not true that is every quasi-static process need
not be reversible.

Irreversible process

In nature all changes are irreversible because the conditions for the reversible
Process cannot be satisfied.

Any process which cannot be made to proceed in the reverse direction is called
an irreversible process. :
Examples
L. Transfer of heat between two bodies at different temperatures.
% Two gases when left to themselves tend to mix together. But the reverse process,
L.e. their mutual separation is not possible. :
4 Rusting of iron is an irreversible process. Rusting is a chemical change during

' i i its original
Which iron gets converted into iron oxide. It cannot by itself come to its orig
State,

Spontaneous expansion of a gas into an evacuated space.
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5. Transfer of electricity through a resistor.

" Note: It may be noted that in a reversible Pr9c§§s both the .s.ystem ;}nd ll?c locy
surroundings must be restored to their 1mt1§l states w1th0u_t ploducmg any
changes in the rest of the universe. Here un{verse does no't imply cosmic i
celestial, simply means surroundings and auxillary surroundings of the systey,

Carnot engine and Carnot cycle

Nicolas Leonard Sadi Carnot, a brilliant young French engineer (who died yOung
at 26 in 1832) in the year 1824 proposed an ideal heat engine- free from g
imperfections of actual heat engine. It consists of a cycle of 0perat1_0ns, he_nce the
name Carnot's cycle. Though this can never be realised in practice it provides the
best guide for the construction of actual heat engines and efficiency improvement,
This ideal heat engine (Carnot engine) consists of four parts.

(i) Insulated cylinder

It is a cylinder with non-
conducting walls and conducting
bottom. A perfect gas isused as a
working substance. The cylinder |
is fitted with a perfectly non- \ _\\\\\
conducting and frictionless Working

1 substance
piston.

(i) Soutce o
It is a hot body of infinite [

Piston

M

le— Cylinder

LTI

L

thermal capacity at temperature [J
T,. Any amount of heat can be [is .
1 ource T 4 Insul
drawn from the source without ] msltla;tclingé
changing its temperature T " ;
(i) Smk Figure 3.5
he:tté:nabc:ig()dy Qf m’ﬁnite thermal capacity at temperature T,. Any amount of
3 ed to it without changing its temperature T 2
(iv) Insulating stand “
This is a perfect]
¥y nsulating stand : .
when the cylinder is placed ongit, 50 that the gas can undergo adiabatic changes
Working of Carnet engine
In order to obtain .
PR continuous supp|
o the following PPy of work, the work d
12 cycle of operations Orking substance is subjecte
Perations known as Carnog's cycle.
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ca (mot's cycle of operations

ider that the cylinder contains op
Cons € mole of 3 perfect gas as the working
Substance.
| [sothermal expansion

To start with the cylinder containing the gas at T, K is placed on the source. The
initial pressure and. v0¥ume of .the gasare P and V, respectively. It is represented by
the point A the mdlcat‘or diagram. The gas is allowed to expand isothermally at
TIK until 1ts p.ressure becomes P2 and volume V, . Itis represented by the point B in
the indicator dJagr?tm. Let Q, be the amount of heat absorbed from the source during
jsothel'mal expansion. The work done by the gas during this expansion is given by

VZ
\
Q =W, = [ PAV=RT,In-% = Arca ABGEA .. 3)
- Vl 1

2. Adiabatic expansion

The cylinder is now removed
from the source and is placed on
the non-conducting platform
until its temperature falls to T K.
Let P, be the pressure and V, be
the volume of the gas now. This
1s represented by the curve BC
on the indicator diagram. The
work done by the gas during this
process (adiabatic) is given by

o

C®, V)

V—p
Figure 3.6

v 2
W, = .f PdV = R(I;=T;) _Area BCHGB =~ o 4)
2 'Y ] 1
vz
3 %a
Isotherma) compression

'__The cylinder is now removed from the insulati

T nd V, be
thmk at TzK and the gas is compressed isothermally. Let ?4 be thff p;;‘ﬁ UJ; ?he cuérve
€ Volume of the gas after compression. The process is represe

ng stand and is placed over the
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ce the points A and D are at the same adiabatic DA
since

Tlle o 2V1_l

~1
| T (%Y
T, \Y,

: i diabatic BC
«iarly, points B and C are at the same 2
Similarly, P
-': Tlvg = T,Vy )

- | Tz g Vz]*jr—l
o ' T Vs

 Comparing eqs 8 and 9, we get

v,

R.T2 In —vl—
VZ
Vl

_9-%
efficiency, M= Q
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| P TIn -2
; Rlnv1
i
| ZTI—T2
n T,
5
S e e 1
or = T (11)

This shows that n depends only upon T, and T, i.e. independent of .working
substance. For 100% efficiency T, must be OK. i.e. the temperat.ure of.th.e sink must
be atabsolute zero. Since this is impossible, attaining 100% efficiency is impossible,

When T, =T,, we have n =0 i.e. the engine does not work.
Example 1 |

- Calculate the efficiency of an engine that absorbs heat at 600K and exhausts it at
400K. ‘

Solution
T, =600K, T, =400K

_T-T, 600400

Efficiency, n
4 T 600
_2 1
U=
N N=33.33%
Example 2

A cammot engine takes 200 calories
. of heat from
rejects 150 calories asource at temperature 400K and

of heat to the sink. What i .
calculate the efﬁciency of the engine. = i of LEBLIS
Solution

Q; =200 calories, Q, =150 calories, T, = 400K

Efficiency, = Qng _200-150
i

200
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i.e.

; o e
. Using N T

=1-——2_

4~ 400
78 1

—_ = i 3
or 400 44
5 T, =300K
Example 3
Three designs are proposed for an engine which is to operate between 500K and

300K. Design A is claimed to produce 3000J of work per keal of heat input, B is
claimed to produce 2000J and C, 1000J. Which design would you choose.

Solution )
T, =500K, T, = 300K

0.4

no DT 500300 _
I 500
claimed efficiencies of the proposed engines are

Work output 3000
Al= _
T o e AL

=0.72

2000
niBl= 2185 0.48

P-stible, we choose design C.

Example 4

WQ:-; feversible engine converts one fifth
S .lWhe-n the temperature of the sink is redu

of heat which it absorbs at source into
ced by 77°C, its efficiency is doubled.
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Py %heﬂ it works as a heat engine
orbs Q, amount of heat from
jrce at temperature T |, does
arce ; Source T
 mount of work W and rejects : Source T,

—> Workdone, wW—s
W

! _é’_ru_:'geraj;or is a heat engine 2,
g in the reverse direction.
ks on the principle of Sink T,
Q, amount of heat from (a) ®)

k at temperature T, by Figure 3.7
“W amount of work on the

by means of external agency then reject Q, amount of heat (Q, =Q, +W)
urce at temperature T (T, >T,). See figure above (b). In this case heat
m lower temperature to higher temperature with the help of external work
1 each cycle Q, amount of heat is removed from the sink. This is the principle

> Coe fficient of performance () of a refrigerator is defined as the ratio of the
nt o heat Q, removed from the sink in each cycle to the work W done in each

B — Q2 = Q2
) Q1 "Qz
' king substance is a perfect gas, we have
Q_%
i Q _T
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(/R
or Qz TZ
Q[_Qz TI—T2
Qz Tz
Grmed;
Ql_Qz Tl"TZ

Note : Remember that unlike efficiency of a heat engine which cannot be greater
than 1, B can be greater than 1i.e., B can be more than 100%.

Carnot's theorem and corollary

From the analysis of working of reversible Carnot's engine and second law of
thermodynamics we can arrive at two conclusions. These two are taken together to
constitute Carnot's theorem.

According to Carnot's theorem "No engine can be more efficient than a reversible
carnot engine working between the same limits of temperature (source and sink) and
all reversible engines operating between the same limits of temperature have the
same efficiency".

Proof
Consider two engines one reversible (R) and the other one irreversible (I). Both

the engines working between the temperatures T, (source) and T, (sink). Let the

amounts of their working substances be so adjusted that the work performed per
cycle by engine is the same say W,

If the engine R absorbs Q, amount of heat and reject
efficiency jects Q, amount of heat, then its

L
Q

If the engine D!
gine Labsorbs Q[ amount of heat and rejects Q, amount of heat then its

efficiency, n'= W
Q

S STV,
4ppose that engine [ is more efficient that engine R

n'>n

Le,
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ie Q,>Q
Q,—Q; isa positive quantity.
Let the two engines coupled
togethﬁl' (see figure 3.8) such that
engmel drives R backward. Then
performs as a refrigerator
driven by I. Therefore engine R
extracts Q, — W amount of heat
from the sink and work W being
~done on it by the engine I,
mfers Q, amount of heat to the
source.

.
-

Source T,

_ The source thus loses Q]

amount of heat and gains Q,
amount of heat, therefore source

Sink T,

Figure 3.8
-*g-ams-QI Q] amount of heat

(' Qi >Q)) . The sink gains Q; —W amount of heat and loses Q, —W amount of
heal so the sink loses (Q, — W) —(Q; - W) =Q, —Q| amount of heat.

= ‘The above discussion shows that the heat gained by the source is equal to heat
lost by the sink. Thus we can say that the coupling of engines R and I behaves like a
self acting machine which requires no external agency to transfer heat from the sink
1o the source. This is against second law of thermodynamics. This implies that our
ba""3“3'fi'»‘@‘»Slll'ﬂpf:lon that the irreversible engine (I) is more efficient than the reversible
engine (R) is wrong. In other words no engine operating between a given source and
sink can be more efficient than a reversible engine operating between the same source
a‘ld S!l‘lk. This is the same thing as saying that the efficiency of a reversible engine

Bpemnng between a given source and sink is maximum.

" Tﬂ’ vae the second part of the theorem we consider two reversible engines R,
44 R, and assume that R, is more efficient than R. Proceeding as before b:ze can
MW R, cannot be more efficient than R . Thcrefore all engines working between

s phicalls tWO temperatures have the same cfﬁmency
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. erature
namic scale of temp o
Thermody e of thermometers. In different the,.m()m

e used. Depending upon the nature o the
mperatures. Hence temperature ey
ree with one another i.e., there

To measure temperature we make us
eters different thermometric substances ar
substances used we get different scales of te
sured with different thermometers do not a%
i 1 temperature.
ideal thermometric scale to measure ) 3 il
Kelvin in 1848 suggested a new scale of temperature known as absolute scale of
temperature or Kelvin scale of temperature. |

To develop an absolute scale of temperature, the measuring temperature must ,
made independent of the thermometric substance. We have one such system. Thy; i
carnot engine. The efficiency of a carnot engine depends only on the temperature of

the source (T,) and sink (T;) . So the work done by the carnot's engine depends only

o 1S ng
To overcome this dlfhculty Lorg

on T, - T,. This idea can be utilised to measure T, —T,. Here it may be noted thy

the measurement of T, —T, is independent of the working substance. The scale of
temperature defined in this manner agrees with the ideal gas scale.
Theory

Consider a carnot engine working between T, and T, temperature measured on
any arbitrary scale. Let Q, be the amount of heat absorbed at T, and Q, be the
amount of heat rejected at T, .

o
We have M Q Q 1 T —f(T17 L)
8—f=1 f(T,, T,)
TS TR
Of 0 “rm-F(Tp T,) )

Where F is some other function of T, and T, simi

. lary, if the carnot engine work-
ing between T, and T(T,>T,

) absorbing a heat Q, and rejecting Q,. We can write

E:F(Tz, T,)

If it works between T, and T,(T, > T,), then
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Q,
()% eq (i) gives

Q. _
Q, X Q. = F(T, T)x F(T,, T,

=F(T, T,)

Q
i.e-v Q3

F(TI,T) F( '3 z)xF( )
3

= F(Tl’ TZ)X F(T:Z’ T;)

g > : :
This is call d function equation. In the above equation L.H.S
FLS containsno T, S
5 S0

RH.S. should be independent of T,. This is possible if we ch
00se

o(T,)
o(T;)

where ¢ is another function of temperature

and F(T,, T,)= %1

F(T,, T,)=
o(T)

F(Tl, Ta) = ¢(T1) X ¢(T2) = ¢(T1)
O(T)  &Ty) &T,)
since T, > T. i
e T, >T, and T, > T, , the function ¢(T,) > ¢(T,). This ¢(T) is a linear function

of T and can be used to me
: asure temperature. Thus L i
e s Lord Kelvin suggested that ¢(T)

i' 1 ]
e. ¢(T)xT, and ¢(T,)T,.
Now we have
Q. T
Q T,
o =0T,
Q2 T2

atures on this scale is equal to
ale is called

This e
el:atm gl;ihtlon shows that the ratio of the two temper
e heat absorbed to the heat rejected. This temperature s¢

Vln s th
, ermodynamic scale of temperature.

Kel
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Example S

A Carnot's refrigerator takes heat from water at 0°C and rejects it to a room 4
temperature 27°C. 1 kg of water at 0°C is to be changed into ice at 0°C. How Man,
calories of heat are rejected to the room. What is the work done by the refrigey ator
this process. What is the coefficient of performance of the machine (1 calgy; ie <
4.27).

Solution
T, =0°C=273K, T, =27°C=300K
The latent heat of ice = 80 cal/g
= 80x10°cal /kg

It means that 80x10° calories of heat is to be removed from 1 kg of water g
make it ice at 0°C.

ie. Q, =80x10’cal

Heat rejected to the room = Q,

Q_T
Usin G
& Q T,
= 3
P 0= Q2 273><80><10
= 87900 cal

Work done by the refri gerator

W=Q,-Q, =87,900-80,000

= 7900 cal
or W=7900x42]
=3.183x10%J
Coefficient of performance 8 = ——T——
T, - I
273 273

=300_273 =—2:]-=10.11
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golution ,
ice melts in one hour = 36 kg

Heat released = 36x80x10°cal

ie. To prevent melting 36x80x10° calories of heat must be removed.

= Q, =36x80x10°cal
T, =30°C=303K, T, =273K
| QT
Using Q. T,
| - 303 3
& Q T, Q, _ﬁx36x80x10

Q, =1.11x36x80x10°
Work done, W=Q,-Q, =0.11x36x80x10cal

W =31.68x10%cal
W =31.68x10*x4.2]

W =133.056x10%J
This is the work done in one hour
Work done in one second

p_ 133.056x10°
~ 60x60
P =369.6 watt

Example 7 _
: A“.i_de;a] refrigerator takes heat from a cold body and rej

cts to a hot reservoir at
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The problem reveals that when the (e

Mperature
1 wef, more and more work has to be done, of the body becomes lower
0 ?

: the definition of the th :
o complete . €Imodynamj .
; a]lll‘e of 273.16 K to the triple point of water T, cal scale, we assign the arbitrary

his T =273.16K

and

we have
g, T
Qv Tp
Q T
Q 273.16
Q
T=273.16—
or QTP ..... (A)
From unit one recall that the equation for the ideal gas temperature, we have
T=273.16 L
= ; LtPTP_“)OP_— (B)

TP
- Here pressure is the thermodynamics property used to measure ideal gas tem-

perature. In the limiting case P, — 0 temperature measurement is independent of

lh¢ nature of the gas. Comparing equations A and B we can infer that Q takes the
role of P. i.e. Q plays the role of thermometric property for a Carnot cycle and at the
Same time it is independent of the nature of the working substance. Thus thermody-
namic scale of temperature is independent of the nature of the working substance. It
iSessential for a standard reference chosen. It will be soon proved that .the thermo-
dynamic scale of temperature and ideal gas temperature scale are numerically equal.

Absolute zero and Carnot efficiency
Recall the relation

T=273.16—9—

Bk oo Q=
| ::Nd en Q 18 small, T is also small. The smallest pos
g f?ﬁs_p ‘Qnding value of T is absolute zero.

sible value of Q is zero and the
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versible isothermal process without trg

. nsf@r
h this process takes place is called abs“lllte

When a system undergoes a re
of heat, the temperature at whic

zero.
The definition of absolute zero holds for all
specific properties of a substance arbitrarily chosen.

. = ) - 7
The efficiency of a reversible Carnot engine 15 given by

substances and is independey, if

where QH is the heat absorbed from a hot reservoir and Q. 1S the heat rejected tg colg ﬂ

reservoir.

Q _T
But we know that Q, T,
The efficiency in terms of absolute temperature is
TL
T

For 1, to be 100%, T, must be zero. That is the low temperature reservoir must

be at absolute zero in order to p ﬁ
convert all heat into work. Since
nature does not provide us with a
reservoir at absolute zero, a heat
engine with 100% efficiency is
not possible

- Equality of ideal gas and

thermodynamic scale

Let @ represent the ideal gas
Mane and T represent ther-
modynamic scale of temperature.
Consider a p.y diagram of 2

tcycle of an idea] gas.
. During the isothermal expan-

O PIOCESS (13.2) the heat s Y

absorbed
et e g‘[v can be calculateqd Figure 3.9

J
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dQ =C,d6+ pqy

(48 =0 isothermar)
dQ = Pdv

V,
= [ Pav

Vi

nR
i sves Peog :

\%
=nRY In—=<
Q, =nR6, In e e e (1)

gimilarly for the isothermal process (3 — 4), heat rejected is

=, \A

DomRb e T @

V.

0 In—2

Q1 = : Vl
0 R e e (3)

2 6,In2

V

4
For the adiabatic expansion process (2 — 3)
dQ =C,d0+PdV (dQ =0 adiabatic)
C,d6 =-PdV

Using Py = nR gives P = %—Q

nRO
e - A\
C,d6= v

e do v . i
e G = = _nR—-\—[— integrating

85, Y 4V
ey

8,







. (©) and =
cale (T) are numerically €qual. the thermOdynam‘C temp
e 5

le 8
xamp. = ‘
E nthe PV dlagr§m shown below, find the efficiency

olution ! _
: Heat i supplied only by iso-
paric processes:

puring the isobaric process

of the engine.

Vv
— = tant
1-2), T constan

when V increases T also increases

dQ, =C, (T, —1,)

During the isobaric process
(3—>4) heat

dQ, =CP(T4 =1.) 0

Work done by isobaric process
1->2)

W, =BV, -V,) =R(T, -T,)

Work done by isobaric process (3 —» 4)
W, =P,(V, =V} =R(T, —T,)

Work done by adiabatic process (2 — 3)

R' v
Y —1

g (L=T)

i
RS

Work done in adiabatic process (4 — 1)

R
g a1

Figure 3.10
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T
(“%)(v-l)

— 2
o

. ? Tl = Vv d =3
S[Ibstltutlng for —= '_2 dan 'I_fz-—

\%
(3o

- P

3

_—

=5

[S8]

Example 10

: 5
Take an ideal monatomic gas ['Y = 5] around the Carnot cycle, where T, =600K

and T, =300K.

Point 1 at the beginning of the adia-
batic compression P, =P, (atmo-
spheric pressure) and volume 50 litres.
Point 3 has a volume V, = 75 litres.
Cﬂmot cycle is shown in figure below.
-Cglculgte the values of volume and
Pressure at all four points.

Pressure PA

Solution

Pl:PO = latm, V, =50 litres,
V.o=9¢ 1. _ -
375 7'].111'68 Y= %’ T, =600K and .Volugle; ;
L QSOOK Figure 3.

1 _lr'.' - s E
.= - -
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PV’ =PV}

P, 50" =5.66P,

Ve :5—— gives V, = 30

3 )
]
50
V=5 =17677 o
22

The process 2 — 3 1s isothermal expansion. So points 2 and 3 are 1sothermal

Applying PV = constant to the points we get

szz T P3V3
PV 2 50 1
P 222
- V3 - 2% 75
50 4 =
P3 ZPO 7—5 3P0 133P0

The process 3 — 4 is adiabatic expansion, so points 3 and 4 are adiabatic points
Applymg P-'TY = constant to the points 3 and 4, we get

PIIT! =PTY

= |
B v T
e de
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. done by the engine, W = QH i Ql,
Wor W=100-735 26.8]
Egal'ﬂple i

. d in a Carnot Cycleas g
o en 1S usc
Hydrog

the'cy‘j; gas volume increase by 2 times.
(a)

s by two times
ure decreases

the press

(b) th

Working subgta

Solution i
h - __]T
(a) . .
At the two adiabatic points
LV =T,y

T v\ Y )144
2 ._I.J — (-—) = (——
TG o 2 2
=0 or TI [Vz

=(0.5)** =0.7578
Tl

n=1-0.7578=0.24 =24%
(b) At the two adiabatic points

= BT -FT

: =y 1-14 - 0:
L (5] -0 o
) . :: | I‘ -TT — P2
% L o8
=y T1

nce. Find the efficiency of
f as a result of an adiabatic expansion.
if a
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|. Thermal efficiency of heat engine:

work output _ W
o e
1= "heat input ~ Q

Qu "Ql_
n :—'“('j;———

T, =T,
q=—t L

Ty

2. Coefficient of performance of refrigerator:

= Q Q T

; WS Qu -Q, 2 T,-T,
Thermodynamic scale of temperature:

T=273.16-%

: QTP

o

4. Ideal gas temperature:

T-27316 Ltz (_;_J

TP

UNIVERSITY MODEL QUESTIONS
Section A
(Answer questions in about two or three sentences)

Short answer type questions
What are the three basic essential things required to convert work into heat?
What is heat engine?
What is the principle of heat engine?
Define the efficiency of a heat engine.
A heat eng; ' '
45 et.lg;ne cannot attain 100% efficiency. Explain why?

. 1 i :

: guish between internal and external comustian engines.

L
2.
3.
4.
5.
6.
[
8.
9.

IMPORTANT F ORMULAE
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are the limitations of first |
guish between first and
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Give ) lhcrm“dmumim

. aw of the :
12 wie: second htrmudy“amics'?
% " S o i y .
pistin ond law of therm

' : dynamies
9 What 1 perpetual motion machine of the fiysy kind o Pkl

¥
What i the pe‘rpe,.lual mf“i(."" machine of the sccon.d kind?
"~ what i the principle of refrigerator?
16. When tWO statements are said to be equivalent
What is 2 reversible process? Give two examples,
What are the conditions to be satisfied for 4 reversible process?
Wwhat is an irreversible process? Give two examples. _
Define the coefficient of performance of refrigerator,
What is Carnot’s theorem?
Define absolute zero of thermodynamic scale.

Section B
(Answer questions in a paragraph of about hal f a page to one page)
paragraph / Problem type questions
| Briefly explain how to convert work into heat.
7 Briefly explain how to convert heat into work.
3 Under isothermal process it is not possible to convert heat into work indefinitely. Explain.
4, Briefly explain the mechanism of refrigerator that leads to Clausius statement of second
law.
Prove that the Kelvin-Planck and Clausius statements are equivalent.
. Show that the efficiency of Carnot engine can never be 100%.
= IhELefﬁcienc.y of an ideal engine increases from 20% to 30% when the temperature of
the sink is Jowered by 40°C. Find the temperature of the source and sink.

Lo [T, =400K, T, =320K]
8. ACamot engine working between 127°C and 27°C. What is the efficiency  [25%]
A ACamot engine whose temperature of the source is 400K takes 800 J of heat at this

~ lemperature and reject 600J of heat to the sink. What is the temperature of the sink and

L Gfﬁcxency of thé engine. [T, =300K, n= 25%]
10 =0

o

G tengine whose low temperature reservoir is at 7°C has an efﬁcienc%(1 o[f Sn(l)% l‘allt
d to increase the efficiency to 70%. By how many degrees should the {empe

ioh ¢ 373.3]
of high temperature reservoir be increased. [

ok 20°C,
€liciency of a ideal engine is 0.2. If the temperature of the sink is lowered by

and sink.
7 ncy 'bécomes 0.25. Find the temperature of the source g
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12.

14.

15.

16.

17.

18.

19.

; insi 277K
- r heat from inside at : il ener
. In a refrigerato for each joule of electrical energy Ccong,

a source at 400K andasink at T,K has an ef; St
d sink are increased by 100K Wha 3 :Ey
M
Dapy,
Imeg

A Carnot engine working between &
of 50%. If the temperature Of both source an

“ienc engine.
efficiency of the eng is transferred to a room at 300K. Hoy, ,

vered to the room

he coefficient of performance of this refrigerator,

[13.047, 12,04

A Carnot engine working as a refrigerator between 269Kg"ld‘ 3]0?K I;EC‘Civc.q 300 cqyq,
ries of heat from the reservoir at the lower temperature. L.a LU] a erll 6‘ amount of hegy
rejected to the reservoir at the higher temperature. Calculate also t Se7gmoum Of worg
done in each cycle to operate the refrigerator. [576.9 cal, 323, J]
An inventor claims to have developed an engine that takes 100000 J at temperatyg, of

400 K rejects 40,000 J at a temperature of 200 K and delivers 15 Kwh of work. wy, ld
you advise investing money to put his on the market? . [No|
Which is the more effective way to increase the thermal efficiency of a Carnot engine

to increase T, keeping constant or to decrease T, , keeping T, constant?
[Decrease T

joules heat will be deli
ideally. Also compute t

A Camnot engine whose efficiency is 10% is used as a refrigerator. Find the coefficiep;

of performance.
What amount of heat is transferred to N, in the isobaric process to perform work 2]
[7]]
In the PV diagram shown calculate the thermal efficiency. T, — nT,
PA
n+y
=1-
P B A [VI 1+ yn}
P, 7k 3
—>
7 v, 4
Section C

(Answer questions in abou two pages)

Long answer type questions (Essays)

L. Describe Carnot’s cycle and o

engine in terms of temperatures,

b s .
tain an expression for the efficiency of an ideal heat




1

=280K, m; =5  find T, - T, = 560K

T 280
: 07=l-— T -9333g
1

T/ T, = 933.3- 560 = 373.3K

AN
= T,

Tl ‘Tz

02= T

T, (T, - 20)

=T 20
e S + e
0.25 T 1

e 20
.025—0'2+T

1

or T, = 400K T, =320K

12, q:;{_,zz_

,

(1)

147
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B0 = =T e @)
n=1""500 ;
is i weget n=-=04
From eq (1), we get T, =200K. put this in eq (2). W 2 -
: 13. T,=27IK, T, =300K
| w=1
5] pes
bll I Q“LZ-IL:_._—
E R T P
E Q} —QE:TI-_TZ
| " TR
- E_le“Tz
1 Q, T,
T} W _ 277x1 277 _
| k Qz:Tl-Tg-BOO—ZW 23
I
; mmfﬁl’l’ed Qi :Q2+W=13‘04
\; 3 Tz
i TI"'Tz
14. T1=3mK1 Tz‘:mK r
Q, =500 cal
i :
% 54
| QZ-T: g T3Q2
!
300
| Q, =55%500=576.9

260

Workdone  =Q, ~Q, =576.9—500
=769 cal=76.9%4.2
=323.1J

# L =200K, W=15x10Wh

T ‘
ﬂu':l_"_rj‘”):l_"2{!)"*:1-- =

zs%

B |
B =




' =y, o impossible.

since M

T, ~T.  Let AT be the Increase in i
e AR
_ Ty gA=T, Ty -T, L
=T (T, +AT) T, +AT T, +AT

..... (1)
{et AT be the decrease in T, , keeping T, constant
o Ta—(h-8D T,-T, AT
2 T, RS et SO S @)

le > Tlx *
So it is go for the second.
T 1
B=- E
-~ 5T T _,
_ T,

17.

T, i 53
b= 1 _1-1]_1—0.1_
_-'B— 1 e s=-01 =
!
1-n

8 aW=Pav = nraT oo (1)
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19.

Tl IN

Thermodynamics

7

M__dW——_————XQ =71

dQ = ot

5
{ 2 heat supplied Q=
4 — 1 heat supplied Q,
Total he

In the isobaric process

SRS

=)
i

Hl<

! 1_<:
1l

=C(T, T
=Cy (T~ To)
at supplied o e b s £l
(1-2)

In the isochoric process (2 —3)

R_P

Comparing eqs 1 and 2, T, = St
n

T: —Td)

V'Z
s
B _nT,
P T
h_T
pAT

VIR =F)

-4 workout area
heat input  heat input
Heatinput =——(nT T)+ i (T

- RE I
e RS 1)+(1+ ﬂ

~ Cp(T, =T +Cy(T,-T,)

"'TFJ

Ne)



:EIL{'Y(T\ v U""(fn‘jg )\
v-1 i

WOfk output = BVa=RV; + PV, - PV,

RT
L RnT1 - RTI + _n—l = R*]*n

. RT,
=Rl =D ==""=1)

RTl(n_1)2
=—__n—_

HRT,(H =14

na— (n-1)
ng%[y(“‘”* n l
Y

D=1 2 Ey)
s (1+yn)

Second lay of T hermodynamics
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Reversible part of the second law

dealing with PV diagrams, which is useful only for hand]ip,
ere ac 1 : T
So fﬁr_ we w . In order to account all systems we genera.llse the PV-dI agram
hydrostatl_c systemA;1 roduct of two variables giving won:k will do for this. These
as work_ d;?gri'cmlzdp generalised force and generalised displacement. Some com.
two variables
binations are given below.

Generalised 0 “"“
System Generalised force displacement ork done
Hydrostatic system Pressure P Volume V PdV
Wire Tension T Length L TdL
Surface film Surfacetension S | Area A SdA
Electrochemical cell emf, ¢ Charge g edq
Dielectric substance Electric field E Dipolement p Edp

In work diagrams, generalised force is taken along the vertical axis (Y) and the
generalised displacement is taken
along the horizontal axis. In a work
diagram the isothermal processes
and adiabatic processes can be indi-

cated by different curves for all Sys-
tems.

<
>

\—— Adiabatic 1
, ———— Isothermal

Here we discuss how the revers-
ible part of second law of thermody-
namic leads to Clausius’ theorem.

Consider areversibje process rep-
resented by the curve AR as shown
I figure 4.1, The dashed curyes
through A and B fe€present adiabatic

Processes | and 2 fespectively, Draw

a line ab from the adiabatic curve |

Generalized force

-
s
-
-
-
-

P
Generalizeddisplacement X

Figure 4.1
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patic Curve 2. The curve ab represents

dia an isoth
51K way that the are ! €rmal -
a0 in such a way area under AR ig equal to g Process. This curye is
& done 10 both the paths is the same, ca under AabB, Thep the
0 :
W Using first Jaw of thermodynamics
Qus = Uy -U, W
and Was = Wos, we get
Que = Qe
<ince N0 heat is transferred in transversing from A to 3 and b to B (adiabatic ath
we have paths),

Que = Qs e (1)

This discussion shows that we can go from an initial state to a final state of a
system in tWo ways such that heat transferred is the same, one along A - B (iso-

thermal process) the other along A — a — b — B (adiabatic — isothermal —s adia-
batic). This reversible process enables us to develop a new concept.

Clausius’ theorem

Consider a reversible cycle ABCDA on the work diagram. The closed curve can
be divided into large number of Carnot cycles by drawing adiabatics and isothermals
as shown in figure below. since no two adiabatic lines can intersect, a number of
lines may be drawn, dividing the circle into a number of adjacent strips. A zigzag

A

=

Generalized force

Generalized displacement




-

tine of alternate adiabatic and j sotls
o

SIS . :
 be drawn €01l ; al portions i Po
closed path may now eorred during all the isothermal p S equal tq the I.
tions such that heat tramé:11 2 B
in the original cycie- :
transferred in the or1g .. During the isothermal process ah at te

i e abcd .
Consider the Carnot cycl the isothermal process cd at temperafy, : p;:ra‘
2? eat

154 Thermodynamics

ture T,, heat Q, is absorbed, during

Q, is rejected. o
From the efficiency of the Carnot cycle we ha
Q_L
or 2, T,
Q Q 2
' Tl - T: sav ()
Applying the sign convention to Q, Q, is positive (absorbed) Q, is negatjye o
jected)
1 91_ = Q,
LE T T
QI Q"P
—_—t = O
or T

Similarly the Camnot cycle efghe, we can write

Q3 Q.;_
{ i th’1‘4 =0

Writing equations for all Carnot cycles and adding we get the equation for the
cyclic process ABCDA.

ie. Q.Q Q
L L T T,
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path M2 be traced that can be made (o APProximate the original cyc]
' e

as close as we
en these 1sothermal rocess oy
please' Wh p €s become mﬂmt\‘:simal, Q

5% Summation in the equation can he replaced bY fnfe

dQ
be =
T Decomes T
we have

gral over a closed path. Thus

d
==
. R
R indicates that it is valid only fo_r reversible cycle. this result i known as Clausius’
theorem. This is one part of Clau‘sms mathematical statement of the second law of
fhe .—modyﬂamics- The other part is for irrevers

ible cycle.
Entropy

Consider a thermodynamic system taken from the initial state A to state B along
the path ACB (say R ) then from B to A along the path

_ BDA (say R,). The two paths
together form a reversible cycle. According to Clausiys’ theorem
dQ

Sk » e (9)
This can be written as

The paths R and R, are chosen arbi-

YT
)
2
k=)
C—
=)
)
e
=
|
)
=
)
O

trarily. It shows that j%g is independent

ized displacement X
of the reversible path connecting between Genc:}hzei 41:;;:
T 1 »
A and B and depends only on the tnitial e
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s integral indicates that there eXists 4 ¢

- Thi : el
final state B- - ‘hich depends only o s i
stte A a0 th.e‘ dinates of a syste™ wiis ], _. [F: s noted th i lhe ‘Mitig] o Ny
thermodynami¢ €00 denoted by S. It may b€ noted that it g a Sta[ef ﬁhal
states. This is called entrop ‘y‘aj state A and S is the entropy at the fing) st Unqm
IfS. is the entropy at the InIU&= TR g
A N
by
' dQ
SB -5 = J‘ RPN R T e ( 7)
RA
It may further be noted that heat entering a system depends op Path Where
&
tropy s not. : _ |
E If 51); states A and B are inﬁniteSJmallylclose, the change in entropy ig also o
tesimal and is denoted by dS. Then equation 7 becomes i
dQ,
e T e (8
dS=— )

dS is an exact differential since it is the differential of an actual function, Wheres
dQ and dW are not. dQy indicates that a small quantity of heat is (ransferreg
reversibly.
The unit of entropy is JK™'.
Entropy of the ideal gas
Consider an ideal gas occupying volume V' at pressure P and temperature T, [ ¢
dQ, be the infinitesimal amount of heat supplied to the gas. According to first lay
of thermodynamics, we have

dQ, =dU +dW
Entropy in terms of T and V
dQ, =C,dT +PdV
Dividing by T, we get
4Q, _C,dT Pdv
S = T
Using ideal gas equation
PV =nRT
P nR
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9—9’.{_ veq C\‘ dT = 7
=V-1 nRdy
T T ——

Now we calculate the entropy Change L i T (9)
N the
itial state T Vo o other state T, v, *YStem goes from an arbitearily
i

d 5 v
j QR:IC\;"(E_;.E*-HRI
i

v,

<|Z

T
S-S _=C, U'IT--&- nR]n—\\/i

5 r

S-S, =CyInT-CyInT +NRInV-nRInv
§—85.=C, lnT+annV—(CvlnTr+annV)

- S 1nT+nRInV~(—S,+CV InT, +nRInV)
S=C;InT+nRInV+S§,

where So=5,-C,InT. -nRInV.

S, is called standard state entropy once the standard reference is chosen and the
absolute entropy S can be calculated.

From equation 9, we have
=G dl % nRdV
T \'
Integrating this equation, we get
S=C,InT+nRInV+S, = (11)

comparing equations 11 and 10 the standard reference turns cut to be the constant of
Integration,

dS

If C,, is not constant we have

B
\
AS=ICV9¥-+ann—‘i

A

Va




and P |
in terms of T hermodynamics

E";“::zﬁ the other form of first law of t
€
dQz = CpdT= VdP
Dividing by T, we get
dQ, . dT_VdP
S G T
Using PV = aRT
v_iR
TP
d dT nRdP
(T2 G e R 0

Suppose the system goes from an initial reference state (T,, P.) to another gy,

(T, P).
Integrating the above equation by assuming C, is a constant, we get

T P
$-8,=C,ln-—nRInp-

or §-8,=C,InT-nRInP-C,InT, +nRInP,

or $=C,InT-nRInP+S —~C,InT, +nRInP,

S=CRE=aRINPES e =, - - . L
where S¢=S,-C,InT +nRInP,

called standard reference entropy once S, is chosen, the absolute entropy S can be
calculated.
If C, is not constant, we have

B

dT
48=[C, == ~nRn T2
,! EE P

A
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AS=nf ey~ =R In b
B A
AiS the initial state and B is the firal jrtd

y in terms of Pand V

of

where
Entl"’p
dQy =dU +PdV

dQy = CydT +PdV

ORI = o~ ol o S S EEeel (14)
Using PV = nRT

Take the differential on both sides

PdV + VdP = nRdT
Collect dT and put in equation 14, we get

- C
dQ, = ﬁ(PdV + VdP) + PdV

Dividing by T
dQ, C,PdV - C,Vdp . PdV

1k nRT nRT T

dQ, _ C,PdV  C,VdP , IRdV
. ey PV v
dQy dVv dpP dv

T =CV_V"+CVW+UR7 ..... (15)

Combining first and the last terms then use C, =C, +nR

dQ _ dv __ dp

T —CP7+CV—P— S (16)
Integrating we get
AS=C. InVHC InP£C - = T e (17)

Where C is the constant of integration. Here we assumed that C,, and C,, are con-
Stants,
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TS diagram | amount of heat gransfer during an infinitesimg; "Cverg-h
infinitesima ig
For every infin!
process We have H
Q& _gs
1
dQ, = TdS

or >
ié
Suppose the system goes from init

the states A and B, we get

B
Q. :!TdS _____

be interpreted as the area under the curye ( J' ydy J

and S along the X-axis. Such a diagram is calleg

] state A to final state B. lmcgl‘ﬂting b
€en

The integral on the L.H.S can
in which T is plotted on the Y-axis

TS diagram. .

This idea enriches our knowledge of understanding the thermodynamic syste,
To describe a thermodynamic system we require two lndepen.dent variables, Among
several possibilities like (P, V), (P, T), (V, T), we take the pairs (T, S). The value f
T and S can completely specify the thermodynamic state of the system.

The thermodynamic changes in the state of a system can be graphically repre.
sented by plotting entropy (S) along the horizontal axis and temperature T along the
vertical axis. Such a diagram is called Temperature-entropy (TS diagram) diagram.
TS diagrams are convenient and useful in the case of reversible cycles. This is be-
cause an isothermal process will, on such a diagram, be represented by a horizontal
line drawn parallel to the entropy axis. Similarly an adiabatic process will be repre-
sented by a vertical line parallel to the temperature axis. This is because, we have

dS
dQ, =T for an adiabatic process dQ = () implies dS=0. So S is a constant such

a process is called isentropic process. For a reversible isobaric process the curve has
a slope that can be obtained from

_c 9T dpP
dS—CP-T—-nRT)- see eq 12

For an isobaric process, dP = ()
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ds=c, L

&

(ﬂ] o

or ‘aS P (-:5‘

(gr’ e shope O the TS diagram at constant pressure.
S Jp

similarly for a reversible isochoric process, the graph is curve which has a slope

hat can be obtained from
i

: dVv
dS=~"fV—dT+nR—V~ (seeeq9)

For an {sochoric process dV =0

CV
=—dT

oLt il
or oS v_C- =

V

[égJ is the slope of the TS diagram at constant pressure. The isochoric, isobaric,
v

isentropic and isothermal curves are shown in figure below.

14
(é’l} LT
5 P \88), Co
S/ 0
A x.._“o : 4
&) &

Isotherm

Isentrope

—> S

Figure 4.4
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ot cycle ' ‘
¥ |s and two adiabatics. Whep i is
™ [‘e

f two isotherma
t a figure as shown below.

TS diagram for a Carn
Pre.

A carnot cycle consists O

sented on a PV diagram we gé
B
A T,
B
S, {s.
| - —
DE T —c
i 2
Figured5 = i St

AB and CD are isothermals at temperatures T, and T, respectively. BC anq A

are the adiabatics.

On the TS diagram the isothermals are tWo straight lines AB and CD para]jg] t©
S-axis and the adiabatic curves are also straight lines BC and DA parallel to T-axis,
The resulting TS diagram is a rectangle ABCD.

Consider a carnots reversible cycle on TS diagram. Suppose S, be the entropy of
working substance in state A, S, be the entropy in state B. Q, be the heat absorbeg
along AB i.e. isothermal expansion at constant temperature T, and Q, be the heat

rejected in the isothermal compression at constant temperature T, along CD.
In going from A to B, along isothermal expansion AB, the gain in entropy of the

working substance is given by

_Q |
e R S g (1)

In going from B to C, along adiabatic expansion BC, there is no change in the

82 "‘Sl

entropy.
In goi i x
going from C to D, along isothermal compression CD, the loss in entropy of

the working substance is givenby

Q
)

5, =5, =%z
e
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Along the adiabatic compression DA, there i niropy 163
grom eqs (1) and (2) we get >0 change in entropy.
Q] =T|(SZ —Sl)
and Q, :T?'(SZ__Sl)

A-Q, =(T; ~T)S,-s)

The quantity Q, —Q, represents the €Xternal work done in thecycleand (T, - T )
55 _s,) is the area of the rectangle on the TS diagram. Thys the area of thl 2
€ Ie

. ct-
angle on the TS diagram represents the external work done in a reversible carn

. yCle- ofs
pfficiency of carnot's engine

==
We have Q

Ti(Sz Sl)
TI _TZ T’:
— =t
n T T

Example 1

Calculate the change in entropy when 100 grams of ice at 0°C is converted into
water at the same temperature. Latent heat of ice = 80 cal/g.

Solution
When 1 gram of ice melts into water 80 calories of heat is absorbed.
Heat absorbed by 100 grams of ice when melts = 100 x 80

Le. dQ =8000 cals

dQ 8000
Change in entropy,  dS= -% =573
—29.3 cal/K

Example 2

- i to 77°C.
Calculate the change in entropy when 1 1itre of water at 27°C is heated to
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Solution
T
¢ 40
. dS= J’T
Change in entropy J

But szms-dT:IOOOXIXdT

m = 1000 g, T =27°C=300K

T, =77°C=350K

5=

350 dT /3’5_(%}
dS= j 10005 =10001n| 355
“‘{r'l
—154.15calK ™

Example 3
One mole of a gas expands isothermally to four times of its volume. Calculate the

change in entropy. R =8.31J/molK

Solution
Vj =V, Y, =4V
Change in entropy, ds = d_;)_
DUﬂng an 1sothermal process
dQ=dw
P
T

Work done during an isothermal process, dW = RT In ( —V—zJ
Vi

7 )
RTin| Y;J
dS: \ VI
T

V
=RIn| =2 |=
n(vl)~Rln4

—_J



Rin4
S =
or 42 cal/K

:8.31><ln4

Example 4 :
Calculate the change in entropy of 5 kg water at 10g°C When changes into va
L= 540cal/ g o

Golution
m=5kg=5x10"g, L=540cal/g T=100°C=373 k
Change in entropy dS =-dTQ =_mJ:
_ 5x10° x540

7 =7.238x10° cal /K

Example 5

Calculate the change in entropy when 100 gram of water at 30°C is mixed with 50
gram of water at g0°C.

Solution
m, =100g T, =303K
m, =50g T, =353K
Let T be temperature after mixing
Using Heat gained = Heat lost

m,s(T-303) =m,s(353-T)

100 x1x (T —303) = 50x1x(353-T)
2(T-303)=353-T
2T-606=353-T

3T =953

T=319.67K

Change in entropy when the tempera
31967k

rure of 100 g of water changes from 303 K to
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ds, =100><1>‘“'[ 303
- 536¢al/K
£ water changes 353 K to 319.67 K

The change in entropy when 50 g 0
- War (31967
dS, =ms I —T—zms n| 353

353

353
: 39 _1__496cal/K (- s=1
dsz_50x1n(319_67J ( )

Total gain in entropy
=5.36-4.96

=0.4 cal/K

Example 6
Calculate the increase in entropy of 1kg of ice when it is converted into steam,

Specific heat of water lkcalkg"C“ . Latent heat of ice 80 cal/g and Latent heat of

steam 540 cal/g.

Solution
(@) Increase in entropy when 1 kg of ice at 0°C is converted into water at 0°C

dQ mL 1000x80
d S—= = =
T T 7 293.04 cal /K

(b)  Increase in entropy when the temperature of 1 kg of water is raised from 0°C
to 100°C .




=312.11 cal /K

100°C
_dQ _mL 10°x540
iy T T . " 9371

=1447.72 cal /K

Example 7

5x10°Nm ™. Given R =8.4Jmol K™, C,, =21Jmol/K

Solution

P,=2x10°Nm™,  V,=20litre
P,=5x10°Nm™,  V,=50 litre

v P1Vl = PZVZ
Using Tl = T—2

T, _BY, 5x10°x50 oo

T, BV, 2x10°x20

T |+ Rinf <2
The change in entropy =C, xIn T[T S Vi

5
_21xIn(6.25)+84 lﬂ[z)

—46.181 )K"
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in entropy when 1 :
0 [ncrease 1n €ntropy kg of water at 100°C is converted into steam at

Total increase in entropy =293.04 +312.11 + 1447.72 = 2052 87 cal /K

Calculate the change of entropy on converting a mole of perfect gas occupying
70 litre at a pressure of 2x10°Nm™ to occupying 50 litre at a pressure of







=
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=2m CP In {_T_l._t'_llz_
2,
E xample 9

Compare the efficiencies of cycles A ang B.

T T TA

T, pemeee —p— i 8 e

+ A
T, prmreme- g 0 LS
>
S S
Figure 4.6(a) Figure 4.6(b)
Solution
i + T *
b
I e ; (plimacs a
+ A
B
T, o T, ¢ .b
S S, 25
S, S, a5 it ; >
4 : 2 Figure 4.7(b)
Figure 4.7(a) i

hich entropy in-
bsorbed during the process in W
Let Q, be the amount of heat b ring the process in which entropy

creases and Q be the amount of heat rejected du
decreases.
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Q -Q, _ Area of abc
Q,  Areaof abed

Area of abe for figure A = Area of abc for figure B.
Area of abed for figure A > Area of abed for figure B

Area of abed for A =T (S, -S,)
Area of abed for B = %(T2 ~T,)(S,-S)

& Na <Ms
Example 10
Show that an isochoric curve plotted on a TS diagram have a greater slope thap 5
isobaric curve at the same temperature.

Solution
oT T
We have 25 =E;‘
\'%
oa) _T
aﬂd aS : —Cp
3 orT oT
- co (343
TR g L oS i
Example 11

Find the entropy increment of 2 moles of an ideal gas (y=1.3) as a result of

certain process where volume increases by 2 times and pressure drops by 3 times.
Solution
We have dS=C 4T EY
R

ds= Cy £+M
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Tz Vz

c % dT
Integfatmg’ AS=C, I -t nR] dv

T v

T
AS — CV ln?rg—"‘anny-l

1

R
AS=L1DE+nR1n2_YL
y=1'7,
1
Plvlzpzvz
Using T, 1%
L_ BV, 1, 2
1 1Vl 3 —3
2R 5
AS = =
13_11n3+2R1n2
2x831. 2
AS = =t
03 In 3 +2x831%x1n2
AS=-22.46+11.52
AS =-10.94]

Example 12

According to Debye’s law, the molar heat capacity at constant volume of a dia-
mond varies with the temperature as

An* (T
Cas 3RT(6)

what is the entropy change in units of R of a diamond of 1.2 g mas$ when it is heated

at constant volume from 10 to 350 K. The molar mass of diamond is 12 g and @ 18
2230 K.

Solution

+nR§£i-\i

dT
We have - AS= nj € v

T
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since volume is kept constant dV =0

350 dT
AS=nICV—TT
10

1.2
=010
=1

.{'
£ 30 . gnt T dT

0

] 4 350
5 0.10x132n R.[ T2dT

 oarR[T]
: AS=—'—5-—['—'J
® 3

10

4
J 4
as=282R (350 10°)

0

E ‘;-j;‘;f (350°~10°)

s 0.87*R(42875000 —1000)
- 2230°

AS

AS =0.3006R

Entropy and reversibility _
When a system undergoes an entropy change, it may absorb heat from the sur-

roundin.gs_ or reject heat to the surroundings. Thus in order to understand the entropy
change it is necessary to learn the entropy change of the system as well as that of the

surroundings. Then only the study will be completed. If AS, be the entropy change
of the system and AS, be that of surroundings, then AS, +AS, is known as the

entropy change of the universe.
Su : is in co i '
Ppose a system is in contact with a reservoir. The system may absorb heat or




heat flows o1t Ok e Teservor, thie €nropy change is

jf the
sider a reversible process in whi
Now con - hich dQy be the amount of heat trans-
dto the reservoir at temperature T.
fert®
Then

change in entropy of the system = _dQ, —

—_—

change in entropy of the reservoir = 99,

Entropy change of the reservoir = - grl 3 9%& =0

If dQ, be the amount of heat rejected by the reservoir at constant temperature T, .

then

entropy change of the system = _9Q,

T
h of the reservoir =+ dQy
entropy change -
' . dQ, Q
Total entropy change of the universe = —,F“- —_Ti =0

It shows that for a reversible process the total change in entropy of the uni-
verse is zero.

Remember that all natural processes are irreversible and only ideal processes are
reversible.

* ' itive.
Note: It may be noted that when heat is absorbed entropy change 1s POSIiy
Example 13 It of
Calculate the entropy change of the universe as a resu

B ]
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{ 0.4 kg mass and with heat capacity at constant pressy

. . “ SSlre
*is placed in a lake at 10°C ;i
)°C is dropped from a height of 100 m into the lake

a) A copper block © :

150 JK ' at 100°C
p) The same block at I¢
Two such blocks at 100°C and 10°C are joined together.

c)
Solution
- dQ dT
a) Entropy ds = = =Cp
=oa 4T 283

change of entropy of copper AS, = G, Coln=—=
1 J; P T 383

283 _ 5
AS, =150xIn 7 =—41.42 K

change of entropy of the reservoir (lake)

Q mc,(T,-T)
AS, =T:*__P_T-,{__"

_ 150(373-283)
I 283

=47.70

AS,

mc, =C,.
Entropy change of the universe = AS, +AS, =6.28 JK™'

b) Work done when it touches water = mgh
W=04x9.8x100=392]

(AS),, =0
W 392
(AS = eem— T — =]
Diske T ~ 283 1.385 JK

(AS) iene = (AS),, +(AS),,, =1.385 JK

¢) Final temperature of the bl 373+273
OCk e ———
3 323K




(AS)unweme = (AS)[ + (AS)U = 364 JK"‘

(ropy and irreversibility
n

When a system undergoes an irreversible

equillb“”m state A to another equilibrium state B the change in entropy i
opy is
B dQ
SB - SA — j_"l‘_

dince the process 18 irreversible the path of integration is not known. Thus integra-

ﬁon cannot be performed. .Then what we do is as the initial and final states afe[ in
quilibrium, choose an ar bitrary path and perform the integration without changing
the initial and final equilibrium states. This gives the entropy change of an irrevers-
ible process

B

sesee ol

ic. L T o e o b b St (21)

If the initial and final states are not in equilibrium some special methods are used.
Depending upon the process of irreversibility, calculations are different.

1. External mechanical irreversibility processes

a) Processes involving the isothermal dissipation of work through a system
(remains unchanged) into internal energy of a reservoir is called external
mechanical irreversibility processes.

Examples

(i) Friction from two solids in contact with a reservoir.

(i) Irregular stirring of a viscous liquid in contact with a reservoir.
(iii) Transfer of charge through a resistor in contact with a reservoir.
(V) Magnetic hysterisis of a material in contact with a reservoir.
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Calculation of entropy
mal process Q = W.

According to first law, during an isother
i.e. Q be the amount of heat flows into the reservolr.

T e (22)

Entropy change of the reservolr = = p
As the system remains unchanged the entropy change of the universe is equy] o
entropy change of the reservoir, which is —. Asitis positive quantity entropy of the

uUniverse increases.
adiabatic dissipation of work ing,

b) Now we consider processes involving the
the internal energy of a system open (0 the atmosphere.

Examples
(i) Friction from rubbing thermally insulated liquids
(ii) Irregular stirring of a viscous liquid inside thermally insulated walls.
(i11) Transfer of charge through a thermally insulated resistor.
(iv) Magnetic hysteresis of a thermally insulated material
Calculation of entropy change

As the process is adiabatic dQ = 0. Here work goes over into internal energy of
the system, whose temperature rises from T, to T at constant atmospheric pressure,
As there is no heat transfer to or from the surroundings, there is no change in entropy
of the surroundings. To calculate the entropy change of the system, the original
irreversible path is replaced by a reversible path without changing the initial
equilibrium state (P, T, ) and the final equilibrium state (P, T ).

The entropy change of the system
T
e dQ
KT, T
For an isobaric process dQ = C,dT

L/
d SH_SA:ny.d_T
TA

If C, is constant




e
Sa—95,=C, InT“_

A

b ihe emmpy-c.hange ()t. the universe jg same ;
'his is @ positive quantity, 4 the entropy change of the

{4 : : T
sy rnal mechanical irreversibility processes

) m undergoes a :
ena syste . $ a process in which the
i  diabatic walls transformed into mec ¢ Internal energy of a system

:nto internal energy is called internal mechanijcal irreverqihiligtiza:)“d then back
‘ rocess,

Examples e

0 [deal gas rushing into vacuum (free expansion)

(i) 628 flowing through a porus plug (Throttling process)
(i) Collapse of a soap film after it is punctured,

cglculation of entropy change

As the system is enclosed by adiabatic walls there is no heat transfer into or fr
e surroundings. Thus the entropy change of the surroundings is zero. To calcu?ar:::
(he entropy change .of this i'rrf:‘jfersiblc system the process is replaced E;y areversible
path without changl.ng the initial equilibrium state (V , T) and the final equilibrium
state (V,, T) of the irreversible process.

The change in entropy of the system is

v

B dQ
SB #SA - I TR

VA

For an isothermal process

dQ, = PdV
4Q, PdV  _dV
or B e —
Tt e
v,
B dV
Sy S, = nR —




Rt

-
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2 POSitjy,

. . VB S .
\ee of the universe is nRIn=. This is again
= A

Thus the entropy chat

quantity.

3, External thermal irreversibility processes
A process in which heat transfers from the system to surroundings or Vie

ue of a finite temperature difference is called as external thermg

versa by virt
irreversibility process
Examples

(i) Conduction or radiation of heat from a system to its cooler surroundings.

(ii) Conduction or radiation of heat through a system (which remains unchange)

from a hot reservoir to a cooler one.

Calculation of entropy change
Let Q be the amount of heat transferred from one end to the other end of the

system (remains unchanged) from a hot reservoir at temperature T, a cooler reseryojr

at temperature T..
S; —S, of the system =0

Q

S, —S, of the cooler reservoir =+ -
z

S, —S, of the hotter reservoir = =

Q
(25)

S, —S, of the uni =
2 A VETSE Tz Tl
Here again the entropy change of the universe is positive since 2T
Chemical irreversibility processes

| Pr Rt involving a spontaneous change of internal structure, density, chemical
composition eic. are called chemical irreversibility processes.

Examples
() Diffusion of two dissimilar inert ideal gases.

(1) Mixing of aleohol and water

(i) Osmosis
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(iv) n emical reaction.
v) jation of entropy change
lc? ne of two inert ga
‘ Consld m:;‘ 1Lit A be the ini%izzle; m?t?a"_y 1N Separate adiabatic
al yolume V- = : qml.u?num state of the gy enclosures with
eﬂ“we to mix they com tf) Efnot et equilibrium state g Wh)':1eem' When they are
a“gsidafe d as two separate Iree expansions ip an adiabatic cnclo;n -8 iy can e
0 as i ure.
0 e change entropy one gas is
_ Vs
SB v SA =nRIn —V—— (equat'l
A on 24)
i opy of th :
The change 1N entropy € second gas s
Vv
S;—S,=nRIn2%

Entropy change of the universe due to irreversible processes

___--—;f Entropy Entropy change
Type_ & Irreversible process change of the| of the local Entropy change
irreversibility system surroundings of the universe
Isothermal dissipation of
work through a system W W
Extenal into internal through a 0 T T
meihani el system into internal
ieversibility energy of a reservorr.
Adiabatic dissipation of T, T,
work into internal energy | C» 1‘1? 0 Cpln T
of a system. : :
Internal v, Vi
. : Ve In—+
mechanical | FT6€ €Xpansion of an ideal | nRlIn v 0 nR1in V.
imeversibility | 8%
External | Transfer of heat through Q Q %—%—
; _ﬂ‘e"mal a medium from a hotter to 0 T T 2 M
meversibility | a cooler reservoir. e
B3
Chemical | Diffusion of two diss- A 0 20Rln;
UTEVefslbil' . . . 2ﬂR In Vv -
| Sibility fimilar inert ideal gases. i
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/ 18
change in entropy of the system (tW0 gases)

VB
Sz—S, =2nRIn v,

Since there is no change of entropy of the reservoir, the entropy Change of th,

universe =2nR In —\\/[—5, which is positive.

irreversi rocess the change of ,
In general we can say that for any irreversible p 5 hang of entropy ;.
positive. i.e., for all irreversible processes the entropy of the universe increase.

Irreversible part of the second law S |
The irreversible part of the second law leads to Clausius’ inequality or Clausiyg

inequality is the mathematical statement of the irreversible part of second Jaw.
Clasius inequality theorem states that for any closed irreversible Process

dQ
s
Proof
Consider 2 heat reservoir (source) at temperature T, supplying a small quantity of

heat dQ, to areversible engine R. The purpose of R is to provide heat for the irre-
versible engine 1. Engine R rejects a small

amount of heat dQ, at temperature T, that is :
supplied to the irreversible engine . Engine I- i r.?.sewou
does a small amount of work dW during an ir- I(SQ

I

reversible cycle, so the combined system of en-
gine R and engine I also performs as an irre-

versible cycle. The net work of the combined R
system, according to the first law, equals

@dQ, - But the net work cannot be positive ac- 5Q,
cording to the Kelvin-Planck statement of the Fin

second law, since the combined system ex-

changes heat with 5 single reservoir. So @dQ, E Sl
cannot be positive. Moreover if @dQ, equals Figure 4.8

Zero, then - : _ :
1 4t the end of thc cycle, engine I and its surroundings have returned to their




(Jud® "
(ﬁ dQ] <0

e re,vemble engine R, we haye

F 1’
4Q, dq,
T T2

(egrating around a closed cycle, we get

-

since T is constant (reservoir temperature)

Gy @dQ‘ @dQZ

The heat dQ, rejected from R is absorbed by I, we can write

(dQ,)g =—(dQ,),
When this is substituted in eqn 2 on the right hand side, we get

| fo-g
o Tl(fg%l:?d()l

But (ﬁdQl <0 seeeqn 1.

In

T (ﬁsz

Since T, > 0, we have




_

librium state A to final equilibrium state
B. The system comes back to initial equi-
librium position by a reversible process AL P g
(R) as shown in figure below.
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If dQ is the heat absorbed by the irreversible engine at temperature T, y,. i
write
CﬁETQ- U Sl - s 3)
I
This is known as clausius inequality.
Clausius’ mathematical statement of second law

For a reversible process, we have

dQ
T A i PR (4)
R
For an irreversible process, we have
dQ
D T ©)
I
Combining eqns 4 and 5, we get
dQ
T =0 . (6)

4l

Remember that equality sign is for reversible process and inequality sign is for
irreversible process. Equation 6 is the clausius mathematical statement of second

law.

Heat and entropy in irreversible pro- Tﬂ‘

cesses
Consider a system under goes an irre-
versible process (I) from an initial equi-

R

The entropy of a closed system is

ff’dsifdsnfds ..... @7

Figure 4.9

since entropy is a state function




Bt from Clausius’s inequality theorem we have
1 dTQ=1I:§$+RI:§$‘m0 e (28)
from the definition of entropy
I SR
e ; % aii% fyas<0 i (29)
1.6 ‘L$+ RI d5<0
; ljj%-i[,\dsm [ fes= ] )
it [Pas- [F>0

dQ
JAB"S 2 J:T

This shows that the change of entropy during irreversible prgce;s isl;gltf?i:te;tll:na:l
the integral of the heat divided by temperature of the reservoir. o

changes in state the above inequality can be written as

dQ
dSI g (—,—r‘)l

For reversible process, we have




L)
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dQJ
ds, = (_
R T .
combining the two we can write
B o =i | e (30)

ith entropy we should be careful about whether it is reversible

while dealing w

irreversible.
According to the definition of entropy

_9Qy
dS=—¢
For a reversible adiabatic process dQg =0 implies dS=0.

dS = (0 means that entropy is constant thus we call this as isentropic.
an irreversible isentropic process. Obviously dS =0, but

Suppose we consider

—d,r2<0

i.e. dQ <0 so not adiabatic.
In general isentropy does not mean that it is adiabatic. Only reversible isentropic

implies adiabatic. Irreversible isentropic implies not adiabatic.

Principle of increase of entropy
We calculated the change in entropy of universe for several irreversible processes
In all processes it is seen that the en- :
tropy of the universe increases. This is
known as the entropy principle. Now
we want to establish this statement. For
this we consider a cyclic process in
which a system undergoes an irrevers-
ible adiabatic process, a reversible
adiabatic process, reversible isother-
mal process and a reversible adiabatic
process and finally comes back to the
u‘)in'al state. These processes are de-
picted in a work diagram as shown
4.10. Figure 4.10

Y A




int e ints
™ adiabatic points we can very well write

he
i S =X
Thus equation 31, becomes
AS=S5.-S, 32)

Now the system is at & i.n Co.ntact with the reservoir at 7' the system at C i
Jowed 10 undé'll‘go a reversible isothermal process until the s&stem attains an e:xs
ropy SAME as in the state A. The system is now at the state D having the same
atropy of the system at A.
ie. Sp =5i

The equation 32 now becomes

AS = S8 W e T e A (33)

Finally the system at D is allowed to undergo a reversible adiabatic process to

arrive at the initial state A.
rocess heat transfer occur only during the reversible isother-

In the entire cyclic p
mal process (C — D). the heat transferred
O =X S =Sl raibiiss 17 (34)
The net work done in the cycle is
W=Q;
According to second law of thermodynamics Qg cannot be positive that 1S heat
process where the

n we would have cyclic

cannot have entered the system, for the )
- heat from 2 single reservoir and the perfor-

only effect would be the absorption of
mance of an equivalent amount of work.

Q, <0

I
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Putting this in equation 34

T/(S, —S.) <0
or TS, —S,) 20
since T'>20

8EAS520
or AS 2 0.

If we assume that the original irreversible adiabatic process would have occyry, d
without any change in entropy, then it would be to bring the system back to g,

initial position by means of one reversible adiabatic process. Moreover since the peq
heat transferred in this cycle is zero, no work would be done. Therefore under theg,

circumstances the system its surroundings would have been restored without pr.
ducing any changes, which implies that the original process was reversible. Since
this is contrary to our assumption that the process was irreversible, the entropy of

the system cannot remain unchanged
AS > 0.
Since entropy could not have decreased.

Application of entropy principle
According to the entropy principle for all irreversible processes entropy of the

universe increases. When applying this principle to machines such as engines or
refrigerator we can gather information regarding the behaviour of the machine.

For example consider a refrigerator operating between temperature T, and T,
Suppose a quantity of heat Q is removed from an object inside the refrigerator by
doing W amount of work. Then the body goes from its initial state to final state B.

AS of thebody = S; —-S,

AS of the refrigerant = 0

AS of the reservoir = Q ; il
1

Since Q+W amount of the heat is rejected to the reservoir.
Applying the entropy principle
AS 20, we get




: : qQuired to'be ¢
s an estimate of the minimum cost of Operation of the refy; alculated. It pro-
Tigerator,

yides U
gatropy and disorder

We know that all natural processes are irreversible. For al
AH10PY increase. This 18 because when a system undergoes

: an irreversib
the order of the final state is less than the order of the initi ek e

: : : al state. In other words
when the disorder increases entropy increases. That is an increase of entropy of a

system can be described as an ingease in the disorder of the system. No we will see
(hat how entropy 18 connected with disorder by taking several examples of irrevers-
ible processes.

Examples -
{. Consider a solid in its initial state. The particles which are the constituents the
solid are infinite order. When the solid is allowed to undergo an irreversible

process by supplying heat to it sublimation occurs. During sublimation there is
no change in temperature at the same time system absorbs heat (Q). The entropy

Lirreversible processes

change can be calculated by % which is positive. We can say that entropy

increases. The final state of the solid is obviously vapour. The particles which
are the constituents vapour occupy greater volume and particles are in random
motion. So the final state is disordered than the initial state.

2. Consider the case of isothermal expansion of an ideal gas. AS thj %:ss 2\)13::;8:
heat it expands slowly. At the end of the process the gas occup

: entropy
volume. The gas molecules are more disordered now. We say that the entrop

i sacreased. At the
of the gas has increased because the am‘ount. of dxsor:le; :a;:gs e on
same time we already proved that during jsothermal CXp

increases.

_
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3. Now we consider a ferromagnetic material, its magnetic dipole MOmengq are
mostly aligned in one direction i.e.. initially ferromagnetic material is ip Ordereg
state. When the material is heated to a temperature above Curie temperap,
phase change occurs and it is an irreversible process. The system now attaing
another state exhibiting the behaviour of paramagnetic material ip Which
magnetic dipole moments are randomly oriented (disordered). It is dye o thig
behaviour entropy of the system increases.

The above discussions show that entropy of a system and it surroundings will

always increase during irreversible processes. 1.€., entropy of an irreversible Process

move always forward. Metamorphically we say entropy is the arrow of time,

Exact differentials
According to first law of thermodynamics

dQ = dU +dW

or dU =dQ-dwW

on the L.H.S we have an exact differential. On the R.H.S both are inexact differep.
tials. Then how it is consistent. In mathematics there is a technique of converting
inexact differential into exact differential by multiply with an integrating factor. The
same technique is followed in thermodynamics. We defined work done as

dW =PdV

dw

— =dV
or 2 d

Here dW is inexact, by multiply with an integrating factor it becomes an exact
differential dV. Or writing
dW = PdV
it becomes an exact differential. Remember that only for quasistatic infinitesimal
process it is valid.
Similarly the inexact differential dQ can be converted into exact differential
with the help of definition of entropy, we have

Here dS is an exact differential as it is a state function. However, dQ is inexact
Since 1t depends on path. The definition of temperature enables us to convert inexact




,ffereniial dQ into an exact differential by multint: E"“"’P‘J =
: plying With an jnte st
| stating facror
T dQ =Tds
of e firs law of thermodynamics cap pe TeWwritten a5

dU =TdS - pgv

NoW poth sides are exact differentia]

while writing the first law of thermog

! Even if use sign convention nothing

ynamics we
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IMPORTANT FORMULAE

e ——

———

g d
| For any reversible cycle: cj') $R 0

9. Change in entropy: * R

or dS=

3. Entropy of the ideal gas.
(i) Interms of Tand V

d A
-—g=C il-‘-'l-l'lRﬂ

T. *F ¥
of S=C,InT+mRInV+S,
(i) Interms of T and P
dQy . dT . dP
Tt
or S=C,InT-nRInP+S,.
(iii) In terms of P and V
dQ dv ap
TR ICP-\,_"+CV p

or s:CPIHV+Cv1ﬂP+So-







i) Bntropy Change ininternal mechapicyy ;o
: (a) Free expansion of ideal g, Sibility progegs,
Entropy change of the syster = R n Vi

A

Entropy change of the Surroundings = g

Entropy change of the universe = ng 1o Va

A
i) Entropy change in external thermal irreversibility process

(a) Transfer of heat through a medium from g hotter to a co

Entropy change of the system =

Entropy change of the surroundings =

—_—

B

Q_Q
T T,

Entropy change of the universe = Q _Q

T, T,

- A
(v) Entropy change in chemical irreversibility process.

(a) Diffusion of two dissimilar inert ideal gases.

Entropy change of the system = 2nR ln-:;?-
A
Entropy change of the surroundings =0

SF V
Entropy change of the universe = 2nR1nV—B.

A

dQ
el
= _0

8. Change in entropy of ice at 0°C is converted into steam

7. Clausius’ theorem:

mLice i dT ————-—nﬂ-‘ﬂm
AS::————T +mC I T + Tsmam
ice 213

L. =336x10"Tkg"

L =2268x10°Tke

C = specific heat of water

_ 42007kg ' K

Entropy 19

oler reservoir.
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¢ water at on€ at temperature T, the other at temperagyy, :

of wa

harically

ount

9. When equal am )
Ily and 150

mixed adiabatica
[ dQ AS) = ]L EIQ‘
@by L T

AS = (AS), +(AS)y
and m,,, specific heats ¢, and ¢, and temperapype,

When two different liquids of masses m,

10. ,
T,and T, respectively are mixed.
Final temperaturc
_me T #mG 1
f7 m,c, +M,Cy
T T
im,c,dT _ (m,c,dT
(AS), = , (AS)y = I——
=255 69 [
Total change in entropy
AS = (AS), +(AS),
UNIVERSITY MODEL QUESTIONS
Section A
(Answer questions in about two or three sentences)
Short answer type questions

What is work diagram?
State Clausius’ theorem for a reversible process.

Define entropy. What is its unit?
Express entropy change of ideal gas in terms of temperature and pressure.

1
2
3
4.
5. Express entropy change of ideal gas in terms of pressure and temperature.
6. Express entropy change of ideal gas in terms of pressure and volume.

7. What enables us to draw TS diagram?

8

9.

What is a TS diagram?
What are the advantages of TS diagram over PV diagram?
10. Draw a TS diagram for a Carnot cycle.




1t

(2

3

4.

{6
{7.
18.
19.
20.
1.
2.

4.

26.
1.
2.
0.
30.
3L

oW ¢hat entropy is a constant for g reversible ag; : Eni'rUPy
abatic

Eﬂ') i T Process,
P

ghow that [55 Gy

STJ o
Showthat as v CV-

e ;sochoric and isobaric curve on a TS diagram
What i meant by entropy change of the uniyerse?
Mention four types of irreversibility processes.

what is external mechanical irreversibility process?

Give two examples of external mechanical irreversibility process
Define internal mechanical irreversible process, :
Give two examples for internal mechanical irreversibility process.
What is meant by chemical irreversibility process?

Give two examples of chemical irreversible process.

When a system is said to undergo thermal irreversible process?

Give two examples of thermal irreversible process.

State Clausius’ theorem.

Write down the Clausius mathematical statement of second law and explain the symbols.
Tn general isentropic does not mean that adiabatic. Justify.
Distinguish between isentropic process and adiabatic process.

What is meant by entropy principle?

What is the relation between entropy and disorder?

How will you convert an inexact differential into exact differential?

Section B
(Answer questions in a paragraph of about half a page to one page)

Paragraph / Problem type questions

ki

For a reversible process show that heat transferred in an isothermal process can be

made equal to that in an adiabatic-isothermal-adiabatic process.
Prove Clausius’ theorem for a reversible cyclic process.
Prove that entropy is a state function.

Show that for a Carnot cycle entropy remains constant.
Derive an expression for the entropy of ideal gas in term
Detive an expression for the entropy of ideal 825 in terms of P

s of temperature and volume.
ressure and temperature.
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10.
11.

12

13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23,
24.

25,
26.

27.

Thernodynarmics

: in terms of pressure ;
deal gas 1n tert and vol
ropy Of 1 '.ll]']e

i t
Derive an expression for the e-nq
Define entropy. What is its unit’
Derive an expression for entropy- i
hat during an adiabatic process entropy
Show that durl . ‘. e |
{0A is maintained for 1s in a resistor . the ltmpermure
A current of he entropy change of the universe. 8 B, of
i . = |
ht into contact with a heat reservoir o o

resistor is kept constant. What 1$ [b
i 73K is broug

One kilogram of water at 2 3K. what is the entropy change of the water, o e K
3K, K

When the water has reached 37 (31 iR i L

reservoir and of the universe. ‘ i 0’0 » 1857k~

A 1yF capacitor is connected toa 100V electrochemical cell at 0°C. Calculate tp,e Chang,
[1.83 x IO‘SJK~1]

in entropy. )
rve plotted on a T-S diagram have a greater slope than ,
n

Show that an isochoric cu
isobaric curve at the same temperature. : | .
e universe if a quantity of 100KkJ is trapg forr

Calculate the change in entropy of th
from a reservoir at 553K to another reservoir at 278K. [1.449x 10> K
Show that area of the rectangle of a TS diagram of a Carnot cycle gives the work done.
Derive an expression for efficiency from TS diagram of a Carnot engine.

Show that for a reversible process the total change in entropy of the universe ig Zeto,

How to calculate the entropy change of an irreversible process?
Calculate the change in entropy of the universe when a system undergoes externy]

mechanical irreversible process.
Calculate the change in entropy of the universe when a system undergoes internal me.

chanical irreversible process.
Calculate the change in entropy of the universe when a system undergoes external

thermal irreversibility process.
Calculate the change in entropy of the universe when a system undergoes chemical

irreversible process.
Prove Clausius’ inequality theorem.

dQ

Show that dS > T
Applying the entropy principle to a refrigerator calculate the minimum amount of work

required to be done.
An increase of entropy of a system can be described as an increase in the disorder of the

system. Justify.

—4
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IOns in about t
ans“’er type queStIOI'IS (ESSays) Wo Pageg)
(on% and prove Clausius theorem for ep,

ate
1. ggatefﬂem of second law.

Derive the expression for the change in entropy of

% 0T and V (ii) T and P (i) p andp\;rfw
15 10 problems
See example 1
See example 2

T2 Vz V.,
- —~ |+RIn| = ,—==1
]0 dS _‘CV o ['Tl ) (Vl J vl

5Q IRt 10°x25x1
5 G 300

2. Entropy change of water (gain)

373 6 373
ds = j 3Q _ ]. ms 3L
T T
273 273

373
T
=1x10° Ifl_zmi‘ m(ﬂi} cal /K
273 L 2‘73

Entropy change of reservoir (loss)

dS =6—Q = msd—T
i ¢ T
=1x10? xw=268.1 cal/K
373

Entropy change of the universe

~1311-1126=185JK™

1ov?  Lx107 x(100)

p—

B3, ds=Q

T Ak 273

TOPY and wr
nite dowy Clausiyg Mathematica)

838 in termg of







THERMODYNAMIC poTENT,
PHASE TRANSITIONS

ALS AND

e o

jptroduction

we are familiar with five thermodynamic variabjes p v
ing to first law of thermodynamics 1

dQ =dU +PdV
From the definition of entropy
dQ =TdS

TdS =dU + PdV

or dU=TdS-Pdv .. (1)

This equation says that the fifth thermodynamic variable U is determined by P,
V,Tand S. This is the reason why only four thermodynamic variable are defined.
Out of the four thermodynamic variables only two variable are required to describe
the system completely. Taking two of the four thermodynamic variables P, V, T and
§atatime there are six possible pairs. They are (P, V), (P, T), (P, S), (V,T), (V,S),
and (T, S). The pairs (P, V) and (T, S) do not occur separately because in the basic
equation (1) TdS forms one unit and PdV forms another and they do not occur sepa-
rately, Thus we are left with four pairs of thermodynamic variables (P, T). (P, 8),(V,
Tand (v, $). Corresponding to each pair we can associate a function called lhcrnj():-
dynamic function or thermodynamic potential. In equation (1) we can very T\C“ f’c
that U js 4 function of (S, V). Similarly we have three more functions. T}.m ;rr;:cc
Yynamic function associated with (T, V) pair is called Hefuhos fu;?m;n:‘;]é fum.'-
gtaurgy (A), that associated with the pair (S, P) is called ‘cnlha}py (H) an
fion associated with the pair (T, P) is called Gibbs function (G).

T,Sand U, But accord-

Look at the functions carefully
S, V), (T. V), (T.P), (P.S)
I I [l A
(f_;‘ji"l% from set I to set I1 only one variable iS-Ch
(i“i”g from set I1 to set 111 only one variable 18 €

anged

hanged

ko
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: . 111 to IV again one variable is changed. This b,
 milarly going from : ' it
frorsnl [toll, 1l to {11 and I1I to [Vbya mathematic technique called | ¢ 2endr, tl:; I
ng.
formation. g
Characteristic functions
Legendre transformation | | |
ff the state of the system is described by a function f of two variableg o
i.e., f = f(x’ Y)
Taking differential on both sides
of of
df.-:gx-—d)(%-g;dy ..... (2)
of of
Let = =u and éy— =V
df =udx +vdy o 3)

Now we want to change the variables (x,y) to (u, y). We get a new funciig,
g(u, y) which can be expressed in terms of the differentials du and dy. Let gheg
function of new variables u and y defined by the equation

T e b o b R 4)
Taking differential on both sides, we get
dg = df — udx — xdu
Putting the value of df, yields
dg = udx + vdy — udx — xdu
or dg =—xdu + vdy Per(S)

which is exactly the desired form. From equation 5 we get

(2] 43)

dU =-PdV +TdS
U=U(v, S)

]

Enthalpy (H)
We have



want 1€ e function calleq ep
| W o SC of equation 4

L H:U—_PV:
e 1 S ol

V ; .
U, P and V are state functiop enthalpy i ] e (6)
QUation 6, we get SO a state funetion

U+py

5ince
from ©
dH =TdS—PaV + Pav 4 vgp
dH =TdS + Vdp
Thus His obviously a function of (S, By (7)
z function A

Helmholt
Adsa function of (T, V) and U is function of (

Aby [egendre transformation using equation 4
A=U-TS
Taking the differential
dA =dU -TdS-SdT
Substituting for dU, we get
dA =TdS—PdV - TdS-SdT

S,V).§
s . OWECan 20 OV
e
we get goover from U to

or dA =—-PdV -SdT e (9)
Thus A is obviously a function of (T, V).
Gibbs function G

G is a function of (P, T) and A is a function (V, T). This shows that we can go
over from A to G by Legendre transformation. Using equation (4) we can define G.

G=A--PV

G=AAPV S5 NS e (10)
Taking differentials on both sides, we get

dG = —PdV —SdT+PdV+ VdP

dG = VdP-SdT
Thus G is obviously a function of Pand T.

1 Altogether we obtained four differential equati
4w of thermodynamics we collect all together

ons that arc formulations of first
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dU =-PdV +TdS U(V.S) |
dH = VdP+TdS H(P. S)
dA =-PdV -SdT A(V.T)
dG = VdP-SdT G(P, T)

The main advantage of this formulation is that for example when a SYstem ypg

e R . & it spants S er.
“nees in V and S then it is convenient to use differential equatiop fory T
goes changes - ; seribine a system we go for G. Sim: -1f
and T are convenient variables for describing a Sys go tor G. Similay),, oth

ers.
The functions U(V, S), H(P, S).A(V.T) and (G, P) are called the1'modynarm-C
potential functions. This is because they have the property that if functions g, 3

pressed in terms of appropriate thermodynamic variables, then all the thermogy,.

namic properties of a system can be calculated by differentiation only.

Examples
(i) U is a function of V and S
ie.. U=0(,S)
cu cuU
=|—| dV+| — | dS
-0 3),

we already have
dU =-PdV +TdS
comparing the two equations, we get

ou ou
(a‘vl:“’ =) (ﬁl i

(i) His a function of P and S

H=H(P, S)
cH oH
‘ dH=(‘J dP+[——) ds
OP : oS ;
;’ we have dH = VdP + Tds

| on comparing we get
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ee alsO examples 2 and 3.

show that the Legendre transform;

1
o L —. V | known as Ma;
jc function : ( ¥ )

U A
J_ ——4t 8=
T : T
’ P
df =— T+
and i Td\
Solution
S=8(U, V)
U
N e = R (1)
(A+TS)
J=S———F— =U
or T A= ] -TS
A=U-TS
A
'==7
Taking differential on both sides of eq (1), we get
8]
dJ =dS+—

Substituting for dU = TdS — PdV, we get

U Tds  PdV

\'
x dJ = _;) dT+—E-)9-—

T
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oA
oA _ d(—’] =-S5
Show that (5\7)1_ = AleT ),

Solution
We kn

ow that A= AV, T). Taking differentials on both sides, yields

oA GAJ
T dV+| —=—| dT -
[GV)T (311 ¥

dA =—PdV —SdT
on comparing we get

O0A
_a_é- :——P aﬂd [‘ﬁ'] :_S.
oV ): v
’1 Example 3

5G 5GJ 3
Show that ( P )T A% ( T :

L Solution
We know that G=G({P,T)
Taking differentials on both sides, we get

oG oG
dG = (E)-)r dP +[?ﬁ-l dT

We have the relation

we have the relation

dG =VdP-SdT

%) = (&)

S =V and — :—S
[3P ; ot ),

Derive the relation U= A —T ( OA )
oT

’ on comparing we get

Example 4

v




Using (ﬂ ]s

0 (A
T{_‘[—-ﬂ =-A+T(§ﬁ
or oT\ T s T ).
2| O A )
or T \:ﬁ(Tﬂ =A—T(—3T) =A+TS=U.
v '

Example S
62
Show that Cy=—T (—51%)
Solution

Wehave U=A+TS
Differentiate with respect to T, keeping V constant

au) _(oA +T(§§-) +8
arle Than ), o\

or QH =—S+T(-a—§) +S
aT |, aT )y
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( EEJ =0,
Use dr ),
o2
Cv="ar),
S (3A)
Using = AT )

= ’A
Cy=— a1 :

Enthalpy-Joule-Thomson expansion or Throttling process
The throttling process is also known as a Porus plug pcl;oce;s or a]Jl ou‘le - ThOmson
expansion. To understand this process con51d'er a.cyl11n ert en‘na y lHSl.IlatE.:d and
ided with two adiabatic pistons on opposite sides of a porus wall which is also
:;?a‘gatic (see figure below). The porus wall allows the gas (system). to ﬂ_ow from
one side to another while changing pressure. Between the left h-and side glston and
the porus wall there is a gas at pressure P, and vc_)Iume V. Since the right hagg
piston against the wall prevents any gas from seepu;g through the porus phf‘g’ the
initial state of the gas is an equilibrium state contamcd-between the two pistons,
Now imagine that both pistons move simultaneously at different speeds tg the right
such that a constant higher pressure P, is maintained on the left hand side of the

porus wall and a constant lower
pressure P, is maintained on the
right hand side. After all the gas
flowed through the porus plug, the
final equilibrium state of the sys-
tem is reached (see figure 5.1).
This is called a throttling process
or a Joule-Thomson expansion.
This throttling process is an ir-
reversible process due to friction
between the gas and the walls of
the pores in the plug. In
otherwords, the gas passes through
dissipative non-equilibrium states

| g

e\

LTI

(a) Initial state

h\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\ _}\\\__\\\\\\\\\\\\\\\ﬁ

NS
\

LT
e
7t N<" :

=

o\ T

(b) Final state
Figure 5.1

el
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1
ney
Cmod
Yham;, Potentig
] g,

e W from m‘éld CQLil,hhr“]m State to the inal
of 't?ate pon-equil rmr1n °-41€s cannot be describeq by UM g
i ing conclusion ¢; State,
) stin N be dr-
‘"'idan nter® areg described by the drawn ahey the hfr.“"xl n
b g whlch Crm()dynami(:c _lnai and ina e
ate ’m e first law we have O0rdingteg Cquilibriy,
10

U2=U, =Q-[pay
gr i (IW = Pdv
§ince the throttling Process occurs in aq adiabatic enclos
o Q::O, we o
UZ_UI:—IPdV ﬁcet
ide is the work done ~ o = (1
The right hand side is the work done on the ] 2)
0 \‘:
_I PdV = _j PdV "j. P.av
A o
_I PdV = +P1Vl = P3V;
Now equation 12 becomes
el +RV, - PV,
4 U, +RV,=U,+RY,
e e e e (13)

Note: It is not correct to say that enthalpy remains constant during a throttling
process since it is an irreversible process and passing through non-equilib-
rium states and we cannot predict what is happening in the intermediate

states.
Other properties of enthalpy
l. We have
dH=TdS+vdP = (14)
or dH = dQ + VdP
Dividing throughout by dT, we get
dH _dQ VdP

dT dT dT
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At constant pressure

&)=
Q

Q1 =c
By definition dT ), g
oH| _
ie. [‘g‘f) S o o (15)

shows that the function enthalpy H is related to an eXperimen;
al

Equation 14 he
i acity at constant pressure. This .
perilictest GpEcy P €Quation proyjde,

quantity the s
a means of calculating the enthalpy from C,.

)
6T P

2
or H, -H, =ICPdT ..... (16)
1

For an ideal gas C, is a constant, thus
H,-H, =C,(T,-T))

For an isobaric process, equation 14 becomes

dH=TdS
or dH=dQ
ie, g =0 (17)

This shows tbag the change in enthalpy during an isobaric process is equal to
the heat that is transferred between the system and the surroundings.

3. For an adiabatic process, equation 14 becomes

dH = VdP integrating

2
H -H =
,—H, !VdP ..... (18)




S'mi]ar By A8 PV diagram the area under the curye which
two tyPe D FI S I VdP. See figure belg Work done are of

W,
y A P 1\
1A 1
Area = !
[ xdy
T - == H
1 Area =} .
~Jyax A
== —> X . i Y
Figlll'e 5.2 Figure s '3

Note: —j PdV is the adiabatic work and deP is the flow work.

4. For areversible isobaric-adiabatic process equation 14 becomes
dH=0
or - H = constant

Thus enthalpy is defined as that something which remains constant during
reversible isobaric-adiabatic process.
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1 of a hydrostatic systepy; ——_

Internal energy UV, S)
For free expansion (irreversible) 1

H, = H,

)

dU =dQ - PdV

(8U) _
(&)~

t3

aT
3. For isochoric process
U -U =Qy
4. For ideal gas

f
U, -U, =[C.dT
5. For adiabatic process
r
U,-U, =-[PdV

6. For infinitesimal change

arison of properties of Uand I

Enthalpy H (P,S)\

. Throttling process (irreversgjp )
Sible

H, =H,
dH =dQ + VdP
(&)

ar P
For isobaric process

Hf_Hi =Qp

For ideal gas

o

f
H, -H, = [C,dT
For adiabatic process
f
H,-H, = [VdP

For infinitesimal change

dU =TdS-PdV dH =TdS + VdP
[/C'U\' [aH]

| =T ST
LCS/]V aS P

(Z) - )y
v Js oP ).~

Helmholtz and Gibbs functions
Helmholtz furiction and its properties

L. The Helmholtz function A(T, V) was defined as

A=U-TS
For any infinitesimal reversible process

-----




Critigls and Phase trans; fions 29
can be Calculateq il el
ssure and entropy *OM partjy Gifferengiy €Quationg,
1‘116 pfe‘ aA = w§
aﬁ) i ),
(5\7 T ible isothermal process dT =g
rs
Fo[ a reve dA = —-Pdv
: B
Af_AI -:_jpdv ..... (21)
of increase in Helmholtz function during ap isotherma] process is
( means that .:,l;rk done on the system. For th;
the
ual 10

S reason Helmpg

tant {emperature.

itesimal isothermal process €quation (19) becomes
ny in

For 4

(AA), =(AU), ~T(AS),
(AA); =(AU); ~(AQ),
or

(AA); =(AW),
(&

1z function jg
free energy of the system at cong

as Ir

ed o

rgfeff

the decrease of the Helmholtz energy (AA), of the system
: that
This means

is performed by
imum amount of isothermal work (AW), that is I;); gy
e maxm%ut rnal energy of the system also decreases.
The inte
the system. _
equal to (AW), since

(AU); —(AQ), =(AW),
as (AQ); 20
e equation 20 gives
ible isothermal-isochoric process,
. For a reversible

dA=0

A = constant < constant during
remal

' ion of a system

Le. Helmholtz function

mal-isochoric process.

reversible isother-
or




210 Thermodynamics

_ s esas to minimise its internal energy and +.
' gilibrium 1t tr1€s . d trj
4. 'When a system is in €q _y_Ts, the Helmholtz function is i, &5
p— 2 ayS

to maximise its entropy. Thus A.
minimum for a system in equilibriu.

Properties of Gibbs function

1. The Gibbs function G(T, P) was defined to be

G=A+PV
o G=U-TS+PV ¢ A=U-TS)
el G=H-TS (- H=U+PV)
For any infinitesimal reversible process We have

HG=VAP=SAT ot =i = e (22)

The entropy and volume can be calculated by the partial differential equatigy,

BEECE

cP
If the process is reversible isothermal and isobaric dT =0 and dP =0, equatiop

(22) gives
dG=0

G = constant

i.e., during a reversible isothermal and isobaric process Gibbs function remains

constant. For example first order change of phase. The processes like sublima-
tion, fusion and vapourisation takes place at constant temperature and pressure.

Hence during such processes the Gibbs function of the system remains con-

stant.

Maxwell’s thermodynamical relations

Maxwell established four relations between the four thermodynamic quantities
P, V, T and S. There are several methods to derive these relations. We adopt here the
method based on the four thermodynamic potentials U, H, F and G. By using the
condition for an exact differential we can derive Maxwells relations. This is possible
since dU, dH,dF and dG are exact differentials. You may think that how do we say
that they are exact differentials. Suppose we go from a point A to point B and come
back to A in a P~V diagram where all the points are uniquely fixed. The net changes
in the values of P, V, T, S and U are all zero.
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X @ 0, (f)d’f:(), (JS-ds—_-o % (i)dU:O.

Therefore dP, dV, dT, dS and qU 4re exact di
The differentials of any quantity which depe
(g TS, PV, U+ TS, U +PV etc.) will also be 4

du, dF, dH and dG are all exact differentials.

Condition for exact differentia]

fferentials.
ndson P, V, T, S, Uetc.
perfect differential. It follows that

If arelation exists among x, y and z, then we suppose that z is a function of x and y

{.e. 5= Z(X, Y)
Taking the differentials on both sides we get

0z oz
dz=(—) dx+(——] dy
X J, 0y ).

E;'Z -~
Put M= (:‘j and N= (E}
298 \ 9y ),
then dz = Mdx + Ndy

where z, M and N are functions of x and y. Partially differentiating M with respect to
y and N with respect to x, we get

and \ ox ), Oxoy

since the second derivatives of the right hand terms are equal, it follows that

(%J :(%J A i o T (23)

This is the condition for exact differential

Maxwell’s relations
(i) From first law we have
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dU=TdS— pdV
This is in the form
dz = Mdx + Ndy

= =Vand z=U
Comparing we get M=T, N=-F,x=5,Y¥

) -
But M:(—éx—}y and 5 ).

Lo ey
or T= _ég e an PAY% .

Using the condition for exact differential

() 1&),

(o) (®
Weget (a—v]s = ( 53)\; ..... (24)

This is the first Maxwell’s relation.
(ii) From the enthalpy change, we have

dH =TdS + VdP
This is in the form

dz = Mdx + Ndy

Comparing weget z=H,M=T,x=S,N=V and y=P
Using the condition for exact differential

(5

oT oV
oy (‘3" )s -(ES—JP ..... 25)

This is the second Maxwell’s relation
(iif) From the Helmholtz function change, we have

dF =-8dT - pdy

—



This is in the form
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dz =Mdx + Ndy

Comparing we get z =

FEM=-S x=T N-_p and y=V

Using the condition for exact differential

342
oy ), \ox J,
1
| oS 3 P
We get (aV)T = —(*a—r)v
%)
h = ST W 0oy e S (26)
This is the third Maxwell’s relation.
(iv) From the Gibbs function change, we have
dG =-8SdT + VdP
This is in the form
dz = Mdx + Ndy
Comparing we get
z=G,M=-§,x=T,N=V and y=P
_ Using the condition for exact differential
A&
oy ), \0x),
=)
oP ) \OT )p
_55} = _(ﬂ) ..... @1)
ok P )y aT Jp

This is the fourth Maxwell’s relation.

Equations 24, 25, 26 and 27 are called Maxwell’s thermodynamic relations.

i

_
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A device to remember four characteristic functions and their relatj Shis
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To deal with characteristic functions U, A, H and G
it is necessary to remember their functional dependence,
all of its partial derivatives leading to thermodynamic
variables and Maxwell’s relations. It is not possible to
memorise all these 16 (4 + 8 + 4) relations. For this we
devised a mnemonic diagram called VAT - VUS dia-
gram. VAT - VUS diagram is a square labelled the
corners with V, A, T and V, U, S as shown.

The fourth unlabelled corner of the square is labelled
with the remaining fourth thermodynamic variable P.
Thermodynamic functions are marked on the sides of
the square. We have to fill two more thermodynamic
functions G and H. Fill it with alphabetic order start-
ing from A. After A, G comes first and then H. Fill it
accordingly. Finally draw arrow marks from S and P
to its conjugate variables T and V respectively. Now

VAT-VUS diagram becomes figure 5.5.

This diagram containing all 16 relations that we re-
quire.
For example A is in between V and T. This implies
that A is a function of V and T. Similarly U is a func-

—
Figure 5 4
V A T
G
H P
Figure 5.5

tion 91‘ V and S, G is a function of T and P and H is a function of S and P onc

functional dependence is known, the differential of the thermodynamic function ie
alwa.ys equal to the sum of the terms that include the differential of the thermod s
nam'Jc coordinates. The coefficient of the differential in each term is found by coi-
necting the arrow from the thermodynamic coordinate of the differential to its con-

jugate coordinate.
Example 1
A=AV, T)

dA=()dV+()dT

6A) (oA
(5\/ T (aT ) v ;i

In i
both cases connection goes against the arrow mark




U=0U(V,S)

dU=()dv+()ds

oA 10)
— | =—P and e
(av JT [ oS )v =T

== dU =-PdV +Tds
Example 3
G=G(T, P)

dG =()dT +( )dp

oG G
=S and e s
(BT],,- = [apl i

Thus ~ dG=-SdT+VdP
Example 4

H=H(S, P)
dH=()dS+()dP

(6H oH
(=) = ()

; dH =TdS+VdP
Finally we can write down all four Maxwell’s relations from the VAT-VUS dia-
gram by applying the condition for exact differential

)&

construct your own gimmick by closely observing Maxwell’s

It is better you to
relations and the diagram.

TdS equations |
The entropy of a pure substance can be considered as a functio

such as T and V. Thus

1 of two variables

___._-_
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S=S(T, V)

dS=(£§J dT+(-QS—] dVv
o)y  \0V)r

Multiplying throughout by T, we get

TdS:T(—aéJ dT+T(§§J dv
ar Vv T

oV
oS
But T(EF_)V =Cy

From Maxwells relations, we have
&
oV Jr \ 0T )y

TdS = C,,dT +T(@J dv
oT v

ie.

This is called first TdS equation.

Second TdS equation

The entropy of a pure substance can be considered as a function of t i
T and P. L

= S=S(T, P)

ds-:(-‘?g) d'r+(§§ dp
o), \oP),

or | TdS:T(ﬁ) dT.,.T(is_ dP
aT Jp oP ).

But T -8—5 = [
ar), =C, and from Maxwells relations

=),
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oT
This is called the second Tqs equation,

We get Tds = cpdT~T(9Y_] ap
P

variation of intrinsic energy with volume
When a system undergoes an inj
Jibrium state, the change in intrinsjc

dU = dQ - pav
or dU = TdS - Pdv.
Substituting for TdS from first TdS equation, we get

nitesimal reversible process between

=i tWo equi-
energy is given by

dU =C,dT + T(-a—P-] dV - PdV
aT ),

But from U=U(T, V)

au au ou
=| — = = dVv
dU [ T ]V dT +(6Vl dV=C,dT +[6V)T

Comparing this equation with the above equation

3] 8)-

This is the energy equation of state. From this the change in energy (dU) can be
calculated.

Case 1 Perfect gas
Consider one mole of perfect gas, we have

PV=RT

_RT
Y

@\ R
or ar), V

From the energy equation, we have

P

—
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dU=C g1 +( %Y
v +(6V) dv

T

219

AT a
dU _C_VdT+de

Integrating we get

a
U =ICVdT——\7+ constant

This shows that the intrinsic energy of an actual gas increases with isothermal

increase in volume.
Applications of TdS equations

1.

Suppose a system undergoes a reversible isothermal change of pressure. Here
our aim is to calculate the amount of heat transferred, the work done and the
change in internal energy of the system.

For this consider the second TdS equation.

ov
For isothermal process dT =0
oV’
Thus TdS=-T (ﬁ) J dP
oV
()

From the definition of volume expansivity

1(oV
=),

AR
= br’) o

dQ=-TPVdP

Integrating, we get

—




—————
.
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Where P. is the initial pressure and P, is the final pressure.
1

In the case of solids and liquids 8 and V are almost constants.

This Q=-Tv[dP
P

Q=_TVB(Pf =E)

(see example 6 and 7)
This is the expression for heat transferred in a reversible isotherma] Pressy
re

change.
Now we calculate the work done.
Work done, W=-— f PdV

At constant temperature, dV can be written as
oV
dVi==| —
(&)

oV
v i)

From the definition of isothermal compressibility

-
V(P ),

~ N
. 5
P .
W=J‘kVP-dP
P

since K and V are al : - - :
= most constants take it outside the integral, then integrate We

»
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kV, .
Ve r-x)
This is the expression for work done. (See example10(b))
From Q and W, we can very well calcy] i
{aw of thermodynamics. wiate the internal energy U, by using first

ie. AW=Q+W (See example 10)

Suppose a system undergoes a reversible adiabatic change of pressure
From second TdS equation, we haye

: av
TdS=C AT =T} <
3 (gr)pdp

For adiabatic process dS =0

oV
0=CudT-T| =
odT T( a'rl, dP
T (oV
or - {5
i
From “Viar i
oV
i (&)
T
dT = C_PVBdP
Integrating we get
By
AT = ilVBdP
P, CP

: . : . : T are
Suppose pressure ncreases, obviously P is positive. Since T,V, § and

constants.

A A _T_C\I_B_(P[ _P_‘) ..... (1)

P

_____
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n temperature when a system unq
€rgo
€5

ssion for the changel ] .
This can be applied to all solids gy, li A
]q,

This is the expre
e of pressure.

reverse adiabatic chang
uids. (See example 10)

Example 6
dergoes a reversible isothermal expang;
ion

One mole of van der waals gas un
volume V, to V5 Calculate the amount of heat transferred.

Solution
From first TdS equation We have

&P
TdS = C,dT+ T(ﬁ—) dv

A%

From van der waals equation, We have

a
(P+§/_—2—)(V—b)=RT

__RT a
V-b V*
(&) -+
6T ), V-b
Hence TdS =C.dT+—X
i

For isothermal expansion dT =0

TR
TdS=——
i

ERIR
dQ= v_pdV integrating

Q= Ry

Vi

5o Q=RTn|2=P
V,-b
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1f the pressure on 15 cm® of mercy is i
1y at 20°C is increased reversibly and isother

mally from O to 1000 atm; calculate the heat transferred '

golution
From the second TdS equation, we have

TdS=C.dr—T| &Y
P aT de

For isothermal process dT =0

ov
40 =—Ti="
2=-1{) =
Integrating we get
1000
ov
Q=-T (—) dp
1),
But 110V _ oy _
{30 (3
1000
Q=-T [ pV dp

0
For solid § and V are almost constants.
Q =-TPV x (1000 atm)
Q=-293x1.81x107 x1.5x10° x1000x1.01x10°
Q=-80341

Note: TdS equations are Very useful to calculate the heat transferr
temperature and change in pressure.

ed, the change in

Example 8
Derive the third TdS equation
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Solution . S
Assume that entrop} is a function of Pand V.
AN b

§=8(P. V)

1.8 :
{88 c'.‘S] v
(B ap+| =] ¢
s-(3), (&),
2 3
Tds—T(_) dP+T| = | dV
or . P

Example 9
Show that first TdS equation may be written as

Tds=chT+gTdv

Solution
From first TdS equation we have

A oP
TdS -CvdT+T(§r-JV gy (1)

—
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|
<

[(’JV]
ar ), 2_(52! (fg (P
(aV\ '-aTJP'EVJ‘I_E?T—)»
r.JPJ.l

B = I C ] ~r
Using bR 7 jq'J and k :-_(f_\i ]
P VioP )

\

==

)

Put this in equation (1) yields

TdS = CVdT+T%dV.

Example 10
The pressure on 500 g of copper is increased reversibly and isothermally from 0

to 5000 atm at 298K (p =8.96x10*kgm ), volume expansivity p=49.5x<10° K",

isothermal compressibility k =6.18x10 ”Pa™ and specific heat C, =385]kz K
to be constant.

a) How much heat is transferred during the compression?

b) How much work is done during compression?

¢) Determine the change of internal energy.
Solution

m =05 kg, T=298K, P=495x10°K" k=6.18x10""Pa”

C,=385JkgK .

a) Heat transferred Q = TVRP, (see example 7)

Q= —298x§-92—'316;x49.5><10"6 % 5000%1.01x10°
96 x10°

Q= _7208x%5.58x107° x49.5x10°° % 5% 1.01%10"

Q = —298x5.58x4.95%5x1.01x10”

Q=-415.67
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I L v(p?-P
b) Work done, w=5kV(F -F )

0.5

i
,E W=—"7" "896x10’
l w=43971]
¢) AU = AQ+ AW
AU = —415.67+43.97
AU=-371.71
Example 11

Solution

313

(&),
(),

-5

8Q =dU +PdV

dU+PdV__T oP)
Qe T

?Jrg
< |

We have

,_}__/
|

3
- | —
D

2|3

2
Q)
23

But

oT

dv

auJ (o
or o Ky ) ety (SN
(GV T [31‘]\, 4

dU
—I{+P=T(3PJ
A%

12
6.18x10 " 7= __(5000x1.01x10%)

From the Maxwells equation show that for a perfect gas (
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For 8 perfem gas PV =RT

Example 12

Using Maxwells relation show that C,-C, =T(§E) [9—\1) . Deduce
aT v oT P

Cp—Cy =R for a perfect gas.
Solution
We have S =S(T, V)

dS =(§] dT +(§§} dV
oT )y oV )y

&)-EAEE)

Multiplying throughout by T, we get
T(as} ZT(as) +T&as\ &av)
aT J)p ar )y oV )\ 0T Jp
oS
By definitii T{“\ =Cp
y definitiion aT ),

3 , as}
s Pl =
A (Hf =
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Put this in eqn (1), we get

oS oV
dU = (C, PﬁV)dT+[ (ap] P[-S?JT:IdP

% e
By definition ~TV|\oP ),
A%
SRR
(),

From Maxwell’s relation

85+

dU = (C, — PRV)dT + (kP - BT)VdP.
Example 15 '

. oP C
Derive the relation (‘3?) & V;}PT
S

Solution

_[9Q) (68
G, = (?ﬁl = T(B—-r—l
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YAl
P=v\ot ),

5ubstituting C,and B on the R.H.S. of the given equation, we get

), (o)
RHS = Mo )

e N[OV
"V[ﬁlf (ﬁl

S oP
RHS= (W) = (?f) (By Maxwell’s relation)
P 'S
=L.HS.

PV diagram for a pure substance

To draw a PV diagram for a pure substance we need a set of values of Pand V. To
obtain this we conduct a simple experiment. Here we take pure water as the pure

substance since the triple point water is the bases of the thermodynamic temperature
scale. :

The experimental arrangement consists of a graduated cylinder 2 litres in volume

_ closed at one end and the other end is provided with a piston. The pressure inside the

cylinder is measured by a manometer and the temperature inside is controlled by
ovens and refrigerators. Initially the cylinder is evacuated.

To begin the experiment 1 gram of water at 94°C introduced into the cylinder. It
is due to vacuum inside, water will evaporate completely. Now the cylinder is filled
with unsaturated vapour. This unsaturated vapour state of the system is represented

by the point A on the system. The pressure of vapour is read from the manometer
this will be obviously less than the atmospheric pressure.

' Slowly compress the piston isothermally, volume of vapour decreases and pres-

sure increases until the system reaches a state of saturated vapour. This state is rep-
resented by the point B on the PV diagram.

If the compression is continued condensation occurs to form water droplets. Dur-
ing compression pressure remains constant as long as the temperature is constant
and volume decreases. The region BC represents the change of the system from
vapour state to liquid state i.e. liquefaction. In this region vapour and liquid are in

- equilibrium. This is represented by the straight line BC on the PV diagram. The
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constant pressure at which
isothermal isobaric con-
densation occurs is called
the vapour pressure. The
line CB represents the 1s0-
thermal isobaric evaporation
of water vapour. Here the
volume increases. The line
BC or CB are called
vapourisation line. At any
point between B and C wa-
ter and vapour coexist in
equilibrium. At the point C,
the system is only liquid wa-
ter or saturated liquid.

Liquid phase

f liquid and
' vapour

«— Liquid saturation curve;];”'N. A

Vapour saturation curve A& -

o
Volume y

Suppose we want to com-
press liquid water slightly a

very large increase of pres-
sure is required. It is represented by the vertical line CD on the PV diagram

It may be noted that any point on the line AB is in the v
: : any apour state, a '
the line BC, there is equilibrium between vapour and liquid phases. The c;]r):fg (Xr];tgg

is a typical isotherm with discontinuities at B and C.
A graph is plotted between P and V at various temperatures called isotherms

If we increase the temperature and drawing i i
e increa : : awing isotherms, it can be seen th
;g:glun;atmn hm? (h.onzpntal h_ne) becomes shorter. As the temperature risesa tuﬁlie-:
i v):miz l\lr:sp?urcxjﬁuon ]me vanishes. The temperature at which the vapourisation
is ca e.d- critical temperature (T _.). The corresponding vol

pressure are called critical volume (V. o i

U T (oo 2 (ErrC) and f:rltxcal pressure (P_) respectively. Itis

o i rtion o the s .d' espond{ng to P, and V. on the isotherm) is a
iagram. The isotherm at the critical temperature is

called the critical isotherm. (see the PV diagram).

Figure 5.6: Isotherms of pure substance water

Results of the experiment
1. Foreverys ' 1 iti
S B rtze tl:ttia:;e, ti.lere is a. critical temperature characteristic of the substance.
AR an%o;l; the isotherms are continuous curves which lose their
e the form of rectangular hyperbolas

3 . . - - . - n za Il all
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PT diagram for a pure substance: phase diagram
wing the variation of pressure with temperature is called PT diagry
stdm

A graph sho

A PT diagram is the most common way

to show the phases of a pure Substy
Substanc,

ase diagram. At its simplest a phase can be just another term

hence called as ph : n
solid, liquid and gas. A substance that has a fixed chemical composition thrgy,
is called a pure substance. A pure substance does not have to be of a single elemeny

gh(‘au(

or compound. A mixture of two or more phases of a pure substance is sti]] a pure
substance as long as the chemical composition of all phases is the same,
To draw phase diagram conduct an experiment in the following way.

Consider a solid (pure substance) at very low temperature. The vapour Pressure

1.
of the solid is measured at various temperatures until the triple point is reacheq
Plot the various points of P and T on the PT diagram. We get a curye Witﬁ

positive slope OA as shown in figure called sublimation curve.

2. Temperature of the

sample is raised again pressure P
till critical temperature
is reached. The vapour
pressure of the liquid is
measured at different
temperature and plot it
on the PT diagram.
Again we get a curve
with positive slope AB
as shown in figure 5.8
called vapourisation

[«

|—— Fusion curve i
Solid Liquid
region region B i

Triple point Vapour
region i

o

Sublimation curve

b e e

Critical point

Gaseous
region

curve.

. ; 0O >
The graph so obt_amed 18 Temperature T
called a phase diagram. Figure 5.8
If a substance at its triple

point is compressed until there is no vapour left and the pressure on the resulting
mixture of solid and liquid is increased, the temperature must change for
equilibrium to exist between the solid and the liquid. Measure the pressures and
temperatures of the solid coexisting with the liquid. Plot it on the same PT
dtagran:r]. We get a curve with positive or negative AC as shown in slope figure
above is called fusion curve. This is the picture of complete phase diagram of a
pure substance.

It may be noted that (i) the sublimation curve represents the coexistence of solid




Vapour ang liquid J;
olid and liquid Jies o

point and (iii) s

€ is bounded by the triple
unbounded.

! point and the critical
n the fusion curve starts at

the triple Point and is
In t!'le case of water the sublimation curve i
curve is called the steam line and the fusion

Distinetion between PT ang PV diagrams

I. InaPT diagram no two Phase regiong are shown but i
regions are shown. In PT diagram two phases coll
curves,

2. ThePT diagram g
fusion curve meet

S called the frost

line, the Vapourisation
line is called the

ice line,

naPV diagram two phase
apse into one of the three

ives the triple point w imation, vapourisation and
S. I S triple phase state line not triple point,

at three phases, solid. I

The essential fe

an isothermal increase of pre
no matter how high the press
under high pressure.

First order phase transitions:

Calusius Clapeyron equation
Changes of phase

Almost all substances can exist in different forms such as solid, liquid and v

apour.
Each one is said to be a phase. When solid changes to liquid or liquid ch

anges to

vapour it is called as the phase change. Here we will see duringdcganges of phase
Wwhat happens to the thermodynamical variables P, T, V. S,U and G.

S i ur phases
Let us consider the equilibrium between the liquid phases z:g ;‘;ﬂ; &Fg equal
' inder. The temperature $8 ;
tance enclosed in a cylin i e sitere and
?f Lhetliatrlrlle S;‘;Z:? As each of these phases is in equilibrium, the tempe
n bo ep :
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pressure must remain constant throughout the phase and hence the thermOdYnam-
U and G will be equal to the product of the specific valye antl

cal coordinates. V., S,

mass of the substance in that phase.
Suppose m, and m, are the masses in the liquid and vapour phases and g, and
f the Gibbs potential in the two phases. Then for the w o]gé

are the specific values 0

system.
G=mg, +m,5;
If a small quantity of liquid changes into vapour, differentiating the above eqyq_
tion we get .
....... @)

8G =8m,g, +om, g,
Since the phase change occur at constant temperature and pressure, the process js

isothermal and isobaric.
6G=0
Equation (i) becomes
0=08m,g, +0m,g,

But ém, =—0m,

g =&
This shows that the thermodynamical Gibbs Potential per unit mass (g) will be
equal in the two phases. This is valid for solid to liquid, liquid to vapour and vice

versa.

First order phase transition
The changes of phase which takes place at constant temperature and pressure and

in which heat is either absorbed or evolved are called first order phase transitions. In
first order phase transitions, the entropy and density (or volume) change. The Gibbs
function G remains constant in both phases, while it derivatives with respect to tem-
perature and pressure is discontinuous at transition point.

Transformation of ice into water, water into vapour are examples of first order

phase transition:
Now we will see whether a change in pressure will produce any effect on tem-
perature on transition from one phase into the other. The answer will be given by

Clausius - Clapeyron equation.
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Gin,s function Entropy Volume
r

. } A
I i ¥ e |

\ at ), (EJ | ’

Phase | Yhase I . Phase I | Phase I1 Phase I | Phase TI

iy == L T B e
——

Figure 5.9: First order phase transition —
Consider an enclosure ¢

ontaining a liquid and its saturated vapour in equilib-
rium. If this system underg

O€S an isothermal, isobaric change, we know that, the
Gibb's potential of both Phases are the same '
1iE

G, = G,
This is at pressure p and temperature T.
Let the temperature of the system be increased from T to T +dT and pressure be
increased from P to P + dP, then Gibbs potential goes from G, +dG, to G, +dG, .
So we must have

G, +dG, =G, +4G,
or dGl :dG2

(= G = G,)
We have

G=U-TS+pV
Taking the differential on both sides we get

dG = dU—-TdS-—SdT+PdV+VdP
dU =TdS - pdv
dG =-SdT+Vvdp

dG, =-S dT+V,dp

Using

or

dG, =-S,dT+V,dp

dG, = dG,, we have

~S,dT +V,dP = -§,dT + V,dp
(S, ~ S AT =(V, - V.)dP
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r dP_S,-S,
or dT ~ V,-V,

4 Now S, —S, =dS =dQ and T being constant dQ represents the absorption, of
i T

& ; o3
,‘"’ I latent heat L at the transition temperature, we get
d : dPEL =T,

e dT T(V,-V,)

) : This is our Clausius - Clapeyron latent heat equation.
' Itis also very interesting to note the changes of specific heat capacity at constant

pressure CP, coefficient of cubical expansion [3, and compressibility k durin g a firsg
order phase change. All these parameters go to infinity. This is because transitiop
occurs at constant T and P. When P is constant, dT = 0 or when T is constant, dP =0

A oS
Cp :T(a—r)P S
vier ),

B=- —BL) —0
ov/V ),

i =1 av}
k=—=——|—| 5o
B V{oP ), J

compressibility k is the reciprocal of bulk modulus B. '
The Clausius -Clapeyron equation for 1 mole of substance becomes

daP s, -5,
dT  (v,-v,)

are initial and final the molar entropies and v, and v, are final and

where s, and s,
initial molar volumes respectively.

Remember that S, =8, = b, =h, ; B
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- where s, and S, are initj

al and fina] molar entropies and h,, h, are initja] and final
molar enthalpjeg,

Each point op the curve gives the

thermodynamic Coordinates P 54 T. But Clausius—Cla}meron €quation is not cop-

diagram shown in figure be- P{essure P
low.

Suppose heat is given to
the system, its emperatyre
increases so also itg enthalpy. _

Py Solid
During this the state of the region
system moves horizontally
until it reaches the fusion
curve. Absorption of heat
melts ice produce water. Af-

I ing the fusion curye e
e caching : Sublimation curve
the system again absorbs heat

Without any change of tep,.

Fusion curve

Liquid
region

Vapourisation curve

iTP

Vapour

region
Perature. The corresponding 28

emperature called norma] b
Melting poing represented by

—>
Temperature T
Figure 5.10: Phase diagram for water




ce melts completely the temperatyy, of
' th
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¢ NMP on the fusion curve. When i : )
1. This is represented by a horizontal line (pressure constant) yy,

OV 3

a poin :
system rises agal en k- : 2
b. The point b is in the liquid region. Supplying heat again g |
Ineg

along to the point oint

moves towards the vapourisation curve.
Now we change the scenario. Suppose our system is at NMP, where ice o
with water and air at standard atmospheric pressure. If the sample is placeg ir;ts
d

chamber and the air pressure of the system is lowered. It is due to small decreage ;
e system is no longer on the fusion curve. The result ig that th
e

préssure (say AP ),th !
temperature of the system will change by AT to return to the fusion curve,

From the graph we get
ot tan 0

P

where tan @ is the slope of the fusion curve approximately.

: Ap_ dP
LE. AT = dT
=2
or dpP
(&)
dP . !
aT 18 negative. This

From the curve it is seen that slope of the fusion curve

shows that a decrease in pressure results in an increase in the melting point. Sub-
stances such as graphite and bismuth show the same behaviour. In general slope of
fusion curve is positive for almost all substances. Positive slope implies that in-

crease in pressure results in increase in melting point and vice versa.
The negative slope of the fusion curve also explains why the triple point of water

is greater than normal melting point.
T =273.16K and T,,, =273.15K.
There i§ iny a small flifference (0.01) of temperature between triple point of
water and its normal melting point. Now we are in a position to define triple point

and normal melting.
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Definitions of TP and NMP point of water
Triple point: It is the tem
with water vapour with a

using phase diagram
perature at which ice and water are in equil
Vapour pressure of 612 Pa.

Normal melting point: It is the temperature at which ice and water are in equi-
librium with air at a standard atmospheric pressure,

Now we will see how to arrive at difference in value of temperature between § £
and T using Clausius-Clapeyron equation, :

ibrium

AP
We have AT =——uo

()

The subscript 1 refers 1o the solid phase and 2 refers to the liquid phase. Putting
the values for al] parameters

T=273K, v, =19.65% 10°m* /mol, v, =18 g2 10°m? / mol,
h, ~h, =6.01x10° J o~

and AP=101x10° Pa, we get
AT =-0.0073K_

is the principle behind ice sk

_ ating. When a person stands on a skating plat-
18 due to the pressure exerted

by the person the melting point of ice under the

This
form, it




'_,-(vr--_ Fp)
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1 . . s]ts is provides a shi ry (wat
<kating blade decreases and ice melts. This p pper) €T) surface to

move the skate. A i e
Unlike fusion curves the slope of sublimation and vapourisation Curves of all
NIIKT PUSIC r . ] ‘
substances is always positive, because the molar volume of vapour is always large
suhSIances IS AlWways - . 2 TN . L A B ger
than the molar volume of liquid. This increase in volume suggests that the Vapoyr
has more disorder than its solid or liquid that change in entropy s, -5, js POSitiye

We have dT  v,-v,

: dP
s, —s, is positive and v, —v, is positive implies that —= is positive. This Means

that when pressure increases the boiling point also increases and vice versa

Example 16
Cazlculate the melting point of ice under a pressure of 2 atmospheres. It is given

that the melting point of ice under one atmospheric pressure is 273.16 K. Latent heg;
of fusion of ice is 79.6 cal/g and at the melting point specific volume of ice is 1.090g

cc and that of water is 1.0001 cc. One atm =1.013x10° dynes cm2.

Solution
L =79.6x4.185ergsg™
T=273.16K
V, =1.0001cc
V, =1.0908¢cc
dP=2-1=1am=1.013x10°
2 dP-> L
Using d—T—_W
a1 = FPTV, - V)
L

_ L013x10° % 273.16 x(1.0001 -1.0908)

79.6x4.185x10’
=~0.007533 K




The new melting point is 273, 16 -0.007533 =272.41K
Example 17

Calculate the boiling point of water under a pressure of two a!:mc;spherex;3 i; 1-.115
given thattheboilingpoimofwaterunderapressmeofone atmosphere is 373 2K.

Latent heat of vapourisation is 339 cal/g. Specific volume of water is lcc and spe-
cific volume of steam is 1674 cc.

Solution
dP=2-1=1atm =1.013x10° dynes cm 2
V, =1674cc

Vi =lcc

L =539x4 185 107erg/ g
T=373.2K
dP L

Using dT ~ T(v, = V,)

or dT =QEL—PI—‘—._(LYL:_YI_1

_1.013x10® X373.2x(1674 -1y
539x4.185x10?
dT=28.04K .
Boiling point =
Example 18

dT=273-272 -1k
V2=V, =91x105 3
T=21



S -
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L =336x10°Tkg™’

L,
Using dT  T(V, - V1)
LdT 3.36x10° x1

dP=———-——=
T(V,-V,) 273x91x10°°
~13.525x10°Nm™

6
= _——~——13'SQS x10 =]133.5atm

p=
g 1.013x10°

Example 19

Calculate the change in temperature of boiling water when the pressure is in-
creased by 2.712 cm of Hg. The normal boiling point of water at atmospheric pres-
sure is 100°C . Latent heat of steam is 537 cal ¢! and specific volume of steam

1674 cc.

Solution
dP=2.712 cm of Hg

—2.712x13.6x980 dynes cm™

T=100+273=373
V,=lce, V,=1674cc, L =537x4.2x10"ergs

Us e e
e dT  T(V,-V,)

_dP-T(V,-V)

¥ L

T = 2.712x13.6x980x373x (1674 —1)
537x4.2x10’

dT

dT=1K.

Example 20
The latent heat of ﬂ:lsi(')n of ice I is 3.34 x 105 J kg™! at 0°C and atmospheric
p;lessure. If the change in specific volume on melting is -9.05 x 10-5 m*kg™, then
calculate the change of melting temperature due to change of pressure.



Thermodynamic potentials and phase transitions 245

Solution 5
L=3.34x10°Jkg”', T=273K, v,—v, =-9.05x10"m kg

; dP L
R dT ~ T(v,-v,)
= T(VZ _Vl)dp
or dT ———L_
—273%x9.05%10°°
T = dp
d 3.34x10°
dT =7.39x10*dp
If dP =1atm

change melting temperature =7.39x10*K Pa"!

a1

IMPORTANT FORMULAE
rLegendre transformation:
If f is a function of (x, ¥), then g(u, y) is
g(u, y)=f —ux
of
where u= =
2. Enthalpy (H):
H=H(V, §)
H=U+PV
dH =TdS + vdp

cH 6H
(%] =0 [Ep‘) =¥

3. Helmholtz function (A):

A=AS, V)
A=U-TS
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dA = —PdV —S5dT
9A ) (oA ) .
(O—A | =P |77 J S
: O’V}., 7 ”
4. Gibb's function (G):
G=G(P, T)
G=A+PV
or G=U-TS+PV
or G=H~T5
dG = VdP ~ 547
.2 ( 08 ¢
Lap ), " LaT),
5. Internal energy function (U);
U=V, 8S)
dU = -pPdV + TdS
[(f/’f H p (fr}.f}' i
- v -
| r}'V}ﬁ {,‘S /l"’

(oU)

. (49)
(' {" ( y ”
. Comlar) "laT ), &

7. VAT - YUS diagram:

Q| (M)
ar ), LoT),

#. Condition for exact differential;

A \

9. Maxwell's relations:

(rfM __(.«'JN
%), "\ %)




: P ST Y
10. (i) First TdS equation: ST, V)

(op
TdS =C_ 4T + T\ J.,dv

(ii) Second TdS equation: S(T, P)

(W dpP
Jy
(jii) third TdS equation: § =8¢ P,V)
(8T ( T
= dVv.,
L '*"’J e v ),
({)’U ‘ -0
11, For a perfect gas: | {ﬁ-J
. a
12, For areal gas: Us I C,dT - <+ constant
oV
13, Volume expansivity: f= —(EFJ

oV
14, Isothermal compressibility: k = V[ r)PJ

5. When a system undergoes a reversible i

sothermal change of pressure
@) Heat transferred

Q=-TVB(P -p)
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(iiy Work done

(iii) Change in internal energy
AU=Q+W.

ndergoes a reversible adiabatic ch

A%
AT:-——TC B(Pf —R)
o

16. When a system u ange of pressure
change in temperature

17. For a first order phase change
(i) Pressure and temperature are constant
(ii) Gibb’s free energy is continuous
G, =G,
(iii) The entropy and density (volume) change.
18. Clausius’ Clapeyron equation:

. 4a_ L
@) 4T " T(V,-V,)

i i]i_sz—si
(i) devz—v,

... dp_ h,-h
(i) GT = T(v,-v,)

UNIVERSITY MODEL QUESTIONS

Section A
(Answer questions in about twe or three sentences)

Short answer type questions
What it Legendre transformation?

What are thermodynamic functions?

What are thermodynamic potentials?
Define internal energy of a system. What are its properties?

What is Helmholtz free energy? Give two of its properties.
What is enthalpy? Give two of its properties.
What is Gibbs function? Give two of its properties.

1.
2
3
4,
5.
6
7
8. How will you construct enthalpy H from internal energy U?




1

Why do we say that dU, dF, dH and dG are exact

_ Write down the Clapeyron latent heat equation, an

. Explai
. Explain the effect of chan

. Write d
. What is phase change?

phase transitions 249

Thermodynamic potentials and
What is the significance of thermodynamic potential?

What is throttling process?
What is the connection between throttling process and enthalpy?
differentials?

Write down the four Maxwells relationships.
d explain the symbols.

1 the effect of change of pressure on the melting point.
ge of pressure on the boiling point.

own TdS equations and explain the symbols.

Define a first order phase change. Give two examples
How will you characterise a first order phase change?
Draw the graphical variation i -
of Gibb's potenti i
temperature during a first order phase cgzneglclaual’ g e e L
What is the effect i .
of change in pressure on temperature during first order phase transi-

tion?
What is meant by a pure substance?
What is a phase diagram?
Draw a PV diagram for a pure substance
Dra‘fv phase diagram for pure water.
Distinguish between gas and vapour
Dra‘_v the density curve of liquid and vapo
Distinguish between PT and PV dia i
Define the following: s
(i) sublimation curve (ii
‘ 11) vapourisatio i
What is triple point? e o 1

, Distinguish betw - :
o - een triple point and normal .
. What is regelation? melting point of ice

What is the relation b
etween Clausius-Clapeyron equatj
10n and phase dia
gram?

. During first order
phase what happens to the parameters C,
p P and K.

(Answer questions i Section B
7 : ns in a
Paragraph / Pro paragraph of ab
blem type questions out half a page to one page)

S % g fr .
L,egendre. transformation. gy U, derive the remainin

the ic f
g thermodynamic functions using




250

1

10.

11.

12.

13.

14.

15.
16.

17.

18.

T lu‘nm.wdg/mmfr'a:s

etween *J PdV and JVdP-

dition for exact differential

Distinguish b
ons.

|

[

Derive the con
Derive any two Maxwell s relati

Derive the first TdS equation.
Derive the second TdS equation.
Derive the third TdS equation.

ou
Derive the relation ( 5 =T

he relat 3H =T
Denveterea:on é’S

U p
Derive the relation | gy ==
S
Derive the relation ( gg} =V

oH
Derive the relation | 3T =C,.
P

e am e R

that for a Vander waal's gas [ 2 = 82
oV )¢ £

ine M oCp *V
Using Maxwell’s relation show that | zp ST ——
P

Using Maxwell’s equation show

Prove that ( Xy =( for all gases.
oP Jr
°C at a pressure of 787 mm of Hg. One gram of
late the latent heat of vapourisation.

Water boils at a temperature of 101
water occupies 1601cm’ on evaporation. Calcu
[511.33 cal/g]
100

e melting point of ice when it is subjected to a pressure of

Calculate the change in th

atmospheres

Density of ice = 0.917 gem and latent heat of ice = 336 Jg [-0.7326 K]
] ases from 11.01 to

Lead is melted at 600K at one atmospheric pressure. Its density decre
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ing po'mt at a

(600.754 K1

-3 _The latent heat of fusion 1

10.65gem
00 atmospheres:

pressure of 1
n the

and water at 0°C is -11% Calculate the decrease i
0.1ccg - The in-
[8.2% 107°K]

19. The ratio of densities of ic€
in specific yolume

melting poin
ase in pressure is one at
n melting
alene is 80°C. L

phere rise in pressure-

point of naphthalen® for 2 atmos

_4563cal/ mol. Incre

cre

(0. Calculate the change 1
phth

Melting point of na ase in volume on fusion
[0.06976 Kl

]8.7cm‘mol L,
(85
j—,f—d’l‘ —nRTV - constant T + constant

92. Derive the relation H=G =T LSMIEEE,
5 )= oT

21. Show that for an ideal gas A= ICVdT —-T

P

23, Derive the ration C, =—T o°G
oT? P'

24, Show that the Legendre transformation J —1— Vv
T that produces the thermodynamical

v 1 P
potential Y( —] know
n as the Planck functi
_ tion and defined b
y the transformatio
n

P
H
Vo= G
T +S:_Tr_
and H
dY =—_ V
2 9T —dP
where Jz_E
TS




30. When lead is melted a
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P ). \9T)p

e second TdS equation may be writte

TdS = C,dT — VBTdP.

26. Show that th a8
reversibly and isothermally fre,
m

ure on 0.2 kg of water is increased
atmg

27. The press
pa at 20°C. p=206.80x10°K™", k=4.580x10""
'a

spheric pressure to 3 x 107
a) How much heat is transferred
b) How much is the work done

¢) Calculate the change in internal energy-

: . [C oV
28. Derive the relation P =—T =1
= or” ),

29, A gas obeys the equation P(v— b)=RT where b is constant and c¢_is constant s}

v Sl 10w
that P(v—b)’ = constant for an adiabatic process.
sure, the melting point is 600 K, the density

latent heat of fusion is 24.5J g~'. What is the
[600.76 K|

t atmospheric pres

decreases from 11.01 to 10.65 gcm™ and

ting point at the pressure of 1.01x107Pa ?

Section C
uestions in about tWo pages)

mel

(Answer q

Long answer type questions (Essays)

Derive Maxwells four thermodynamical relations. Use one of them to obtain Clausius -

1
Clapeyron's latent heat equation.
2. Deduce thermodynamic potentials and derive Maxwells relations.
3. Discuss the first order phase transition in detail.
4. Discuss the second order phase transition in detail.
5. Discuss the phase diagram for pure water in detail.
Hints to problems

1 to 12 - All book works
13. See example |

W (99] —T(Q)- P
e have v T- aT vF _____ (1)




B
=

Start with (?‘S'] = ‘(%] then procccd as in €
wi ot 1o

14. dP

L (US} ﬁ(':[
1

Rcmcmbcr that
15. See ux:unpl:: 13.
dP _ L

16. 4T 1(\/ _\‘/)
dp =787 —760 =

4T =1K, V, - V; =1601 -

27 mm of Hg
1=1600, T ~373K

ez -k
7. g1 TV, —VD)
99 atm —99x76x13.6% 980

dP:100-1=
[,=336x10"ergsg"’ T=273K
1
Y -V, = =1-——=-0.09 :
i 2 0917 1(’“] FlnddT
g L

B. g T(V,—V)) dP=100-1=99

=099x76x13.6x980

—

1,=245)/g=245x10" ergsg™ V. T S 1
g = S SN L
T e 10_65‘31"“3 Find dT.

o P=101x10°Nm? L=80x4.2x10°Jkg™"
T=273K
V,~V, =— 3 -
,~Vi=-0.1lem’g” =-0.1x10°m’kg”  FinddT

m- d = —
. P=2atm =2x1.013x10°dynescm >

T=80+273 =
L =4563x4.2x10" ergsmol™




The zbove relation can be writien as

H=T|G-—==F

but T /¥ 0

3 O vy
H=-T'2(G/T)

23. We have H=G+TS
Differentiate with respect to T, keeping P constant
(H) (o8G (38

e = — 4+ ey _!_S
;T /P ;T ,/‘p ; ﬂ,fp




(6 +T[£‘S‘“] +S
c,=(§f 77T,
or :
I (f?j _.§ and WE get =
s 3T )

:f‘-Ui

2. f(x.y)—> g v) g

PF
1 - ol = =
= ¥ —> 1 T T
Here J_T

L PV
S
 U+TS PV
SO N T

H
LYSeH:L:—TS YZ—T+S

Taking the differential of eq (2), we get
H vV
dY =—dT —-—dP,
-T2 T

dv . |
25. Sipce ~—- 15 an exact differential we can write

2'G
T'r———':'

i

v

]

P



or

. ‘ .

k \ X

% = 71

k[ &V \

3\ 1 \ P

oy B\

7]

i K\

"5}3

k B

kK gv-E _gv=|=

By a1

o=[X) +(2
_\A("T‘ apP ).

i ('Jﬁ )

’ k)
(‘ (‘;p _:T \\ (’.?r, .'P

2. From second TdS equation, we have

Using

TdS =C.dT (Y ap
=C, B

TdS = C,dT - TBVdP.

\  §
- =
X
A9
cr !
b
] P

(‘l)




Sub<t1mtiﬂ:1
kV (p7 - F)
work done 2 =
=8 St 25 -"):IUO‘Y
_i":“.ig 10 «02x10 [(3%107) B
~ 4130.1]
4 Change In internal energy
AU=Q+ W =495.8]
23, From Maxwell’s relations
i oS { eV \.
- | =
ﬂ rP 1 \ («(]'- Ll‘
I pifferentiate with respect O temperature
&’s ) | V)
B 1 7
[ \ oTcP \\\ aT? l e (_)
i ;
(S
But C, —Tt *’1 we get
gl )
% /P
{ ' A2
LECP J =T oS
&P ) |\ 9ToP | (B
From egs 2 and 4 we get the result.
9. We have
| dQ =dU +PdV

For adiabatic process S =( and put p= Rk
v-b

L L m




RT
0=C dT + ——d\
\ b
Using C, ~Cy =nR
8 L\ R
dT 1
] ( x (< G, ) dy Q0
I [ ' A b
- : dT dh
f Divide by 1 c,—+(C, ~C, )
. il ' “v=b
Integrate ¢. InT+ (¢, ~c, )n{v — b) = constant
Divide by ¢, InT+(y - DIn(v -b) = constant
h InT ~In(v—Db)+ylIn(v-b) = constant
J T ,
In +In(v = b) constant
v—b
2
In—+In{(v-Db)' = constant
i 1 P(v - b)’ R
n- — - = constan
. R -
or P(v - b)' = constant
. dP !
30, Use —_—
dl' T(v,-v,)
T(v, =v,)
dT = ——=—dP.
{
i - 1 1 P y 5 5
T=600K,v,-v,=—-—, [=245Jg" dP=1.01x10"-1.01x10°,
: p; ’l“.‘

we get 600.75 K.
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